貴州省長(zhǎng)順縣二中2026屆高二上數(shù)學(xué)期末監(jiān)測(cè)試題含解析_第1頁(yè)
貴州省長(zhǎng)順縣二中2026屆高二上數(shù)學(xué)期末監(jiān)測(cè)試題含解析_第2頁(yè)
貴州省長(zhǎng)順縣二中2026屆高二上數(shù)學(xué)期末監(jiān)測(cè)試題含解析_第3頁(yè)
貴州省長(zhǎng)順縣二中2026屆高二上數(shù)學(xué)期末監(jiān)測(cè)試題含解析_第4頁(yè)
貴州省長(zhǎng)順縣二中2026屆高二上數(shù)學(xué)期末監(jiān)測(cè)試題含解析_第5頁(yè)
已閱讀5頁(yè),還剩13頁(yè)未讀, 繼續(xù)免費(fèi)閱讀

付費(fèi)下載

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

貴州省長(zhǎng)順縣二中2026屆高二上數(shù)學(xué)期末監(jiān)測(cè)試題注意事項(xiàng):1.答題前,考生先將自己的姓名、準(zhǔn)考證號(hào)填寫清楚,將條形碼準(zhǔn)確粘貼在考生信息條形碼粘貼區(qū)。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書寫,字體工整、筆跡清楚。3.請(qǐng)按照題號(hào)順序在各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無(wú)效;在草稿紙、試題卷上答題無(wú)效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準(zhǔn)使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.雙曲線的漸近線方程是()A. B.C. D.2.下邊程序框圖的算法思路源于我國(guó)古代數(shù)學(xué)名著《九章算術(shù)》中的“更相減損術(shù)”.執(zhí)行該程序框圖,如果輸入a=102,b=238,則輸出的a的值為()A.17 B.34C.36 D.683.已知橢圓的左、右焦點(diǎn)分別為,為軸上一點(diǎn),為正三角形,若,的中點(diǎn)恰好在橢圓上,則橢圓的離心率是()A. B.C. D.4.已知雙曲線的左焦點(diǎn)為,,為雙曲線的左、右頂點(diǎn),漸近線上的一點(diǎn)滿足,且,則雙曲線的離心率為()A. B.C. D.5.關(guān)于實(shí)數(shù)a,b,c,下列說(shuō)法正確的是()A.如果,則,,成等差數(shù)列B.如果,則,,成等比數(shù)列C.如果,則,,成等差數(shù)列D.如果,則,,成等差數(shù)列6.已知空間三點(diǎn),,在一條直線上,則實(shí)數(shù)的值是()A.2 B.4C.-4 D.-27.拋物線上的一點(diǎn)到其焦點(diǎn)的距離等于()A. B.C. D.8.下列直線中,傾斜角最大的為()A. B.C. D.9.已知拋物線上的一點(diǎn),則點(diǎn)M到拋物線焦點(diǎn)F的距離等于()A.6 B.5C.4 D.210.在四棱錐中,分別為的中點(diǎn),則()A. B.C. D.11.若函數(shù)f(x)=x2+x+1在區(qū)間內(nèi)有極值點(diǎn),則實(shí)數(shù)a的取值范圍是()A. B.C. D.12.雙曲線的一條漸近線方程為,則雙曲線的離心率為()A.2 B.5C. D.二、填空題:本題共4小題,每小題5分,共20分。13.若圓柱的高、底面半徑均為1,則其表面積為___________14.滕王閣,江南三大名樓之一,因初唐詩(shī)人王勃所作《滕王閣序》中“落霞與孤鶩齊飛,秋水共長(zhǎng)天一色”而名傳千古,流芳后世.如圖,在滕王閣旁地面上共線的三點(diǎn),,處測(cè)得閣頂端點(diǎn)的仰角分別為,,.且米,則滕王閣高度___________米.15.已知等比數(shù)列滿足,則_________16.已知直線與直線平行,則實(shí)數(shù)m的值為______三、解答題:共70分。解答應(yīng)寫出文字說(shuō)明、證明過(guò)程或演算步驟。17.(12分)在平面直角坐標(biāo)系xOy中,拋物線:,點(diǎn),過(guò)點(diǎn)的直線l與拋物線交于A,B兩點(diǎn):當(dāng)l與拋物線的對(duì)稱軸垂直時(shí),(1)求拋物線的標(biāo)準(zhǔn)方程;(2)若點(diǎn)A在第一象限,記的面積為,的面積為,求的最小值18.(12分)在如圖所示的多面體中,且,,,且,,且,平面,(1)求證:;(2)求平面與平面夾角的余弦值19.(12分)已知圓,P(2,0),M點(diǎn)是圓Q上任意一點(diǎn),線段PM的垂直平分線交半徑MQ于點(diǎn)C,當(dāng)M點(diǎn)在圓上運(yùn)動(dòng)時(shí),點(diǎn)C的軌跡為曲線C(1)求曲線C方程;(2)已知直線l:x=8,A、B是曲線C上的兩點(diǎn),且不在x軸上,,垂足為,,垂足為,若D(3,0),且的面積是△ABD面積的5倍,求△ABD面積的最大值20.(12分)已知橢圓的左、右焦點(diǎn)分別為,若焦距為4,點(diǎn)P是橢圓上與左、右頂點(diǎn)不重合的點(diǎn),且的面積最大值.(1)求橢圓的方程;(2)過(guò)點(diǎn)的直線交橢圓于點(diǎn)、,且滿足(為坐標(biāo)原點(diǎn)),求直線的方程.21.(12分)已知圓,圓心在直線上(1)求圓的標(biāo)準(zhǔn)方程;(2)求直線被圓截得的弦的長(zhǎng)22.(10分)已知等比數(shù)列的公比,且,是的等差中項(xiàng).數(shù)列的前n項(xiàng)和為,滿足,.(1)求和的通項(xiàng)公式;(2)設(shè),求的前2n項(xiàng)和.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、A【解析】先將雙曲線的方程化為標(biāo)準(zhǔn)方程得,再根據(jù)雙曲線漸近線方程求解即可.【詳解】解:將雙曲線的方程化為標(biāo)準(zhǔn)方程得,所以,所以其漸近線方程為:,即.故選:A.2、B【解析】根據(jù)程序框圖所示代入運(yùn)行即可.【詳解】初始輸入:;第一次運(yùn)算:;第二次運(yùn)算:;第三次運(yùn)算:;第四次運(yùn)算:;結(jié)束,輸出34.故選:B.3、A【解析】根據(jù)題意得,取線段的中點(diǎn),則根據(jù)題意得,,根據(jù)橢圓的定義可知,然后解出離心率的值.【詳解】因?yàn)闉檎切危?,取線段的中點(diǎn),連結(jié),則,所以,得,所以橢圓的離心率.故選:A.【點(diǎn)睛】求解離心率及其范圍的問(wèn)題時(shí),解題的關(guān)鍵在于畫出圖形,根據(jù)題目中的幾何條件列出關(guān)于,,的齊次式,然后得到關(guān)于離心率的方程或不等式求解4、C【解析】由雙曲線的漸近線方程和兩點(diǎn)的距離公式,求得點(diǎn)的坐標(biāo)和,在中,利用余弦定理,求得的關(guān)系式,再由離心率公式,計(jì)算即可求解.【詳解】由題意,雙曲線,可得,設(shè)在漸近線上,且點(diǎn)在第一象限內(nèi),由,解得,即點(diǎn),所以,在中,由余弦定理可得,可得,即,所以雙曲線離心率為.故選:C.【點(diǎn)睛】求解橢圓或雙曲線的離心率的三種方法:1、定義法:通過(guò)已知條件列出方程組,求得得值,根據(jù)離心率的定義求解離心率;2、齊次式法:由已知條件得出關(guān)于的二元齊次方程,然后轉(zhuǎn)化為關(guān)于的一元二次方程求解;3、特殊值法:通過(guò)取特殊值或特殊位置,求出離心率.5、B【解析】根據(jù)給定條件結(jié)合取特值、推理計(jì)算等方法逐一分析各個(gè)選項(xiàng)并判斷即可作答.【詳解】對(duì)于A,若,取,而,即,,不成等差數(shù)列,A不正確;對(duì)于B,若,則,即,,成等比數(shù)列,B正確;對(duì)于C,若,取,而,,,不成等差數(shù)列,C不正確;對(duì)于D,a,b,c是實(shí)數(shù),若,顯然都可以為負(fù)數(shù)或者0,此時(shí)a,b,c無(wú)對(duì)數(shù),D不正確.故選:B6、C【解析】根據(jù)三點(diǎn)在一條直線上,利用向量共線原理,解出實(shí)數(shù)的值.【詳解】解:因?yàn)榭臻g三點(diǎn),,在一條直線上,所以,故.所以.故選:C.【點(diǎn)睛】本題主要考查向量共線原理,屬于基礎(chǔ)題.7、C【解析】由點(diǎn)的坐標(biāo)求得參數(shù),再由焦半徑公式得結(jié)論【詳解】由題意,解得,所以,故選:C8、D【解析】首先分別求直線的斜率,再結(jié)合直線傾斜角與斜率的關(guān)系,即可判斷選項(xiàng).【詳解】A.直線的斜率;B.直線的斜率;C.直線的斜率;D.直線的斜率,因?yàn)椋Y(jié)合直線的斜率與傾斜角的關(guān)系,可知直線的傾斜角最大.故選:D9、B【解析】將點(diǎn)代入拋物線方程求出,再由拋物線的焦半徑公式可得答案.詳解】將點(diǎn)代入拋物線方程可得,解得則故選:B10、A【解析】結(jié)合空間幾何體以及空間向量的線性運(yùn)算即可求出結(jié)果.【詳解】因?yàn)榉謩e為的中點(diǎn),則,,,故選:A.11、C【解析】若f(x)=x2+x+1在區(qū)間內(nèi)有極值點(diǎn),則f'(x)=x2-ax+1在區(qū)間內(nèi)有零點(diǎn),且零點(diǎn)不是f'(x)的圖象頂點(diǎn)的橫坐標(biāo).由x2-ax+1=0,得a=x+.因?yàn)閤∈,y=x+的值域是,當(dāng)a=2時(shí),f'(x)=x2-2x+1=(x-1)2,不合題意.所以實(shí)數(shù)a的取值范圍是,故選C.12、D【解析】根據(jù)漸近線方程求得關(guān)系,結(jié)合離心率的計(jì)算公式,即可求得結(jié)果.【詳解】因?yàn)殡p曲線的一條漸近線方程為,則;又雙曲線離心率.故選:D.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】根據(jù)圓柱表面積公式求解即可.【詳解】根據(jù)題意得到圓柱的高,底面半徑,則表面積.故答案為:14、【解析】設(shè),由邊角關(guān)系可得,,,在和中,利用余弦定理列方程,結(jié)合可解得的值,進(jìn)而可得長(zhǎng).【詳解】設(shè),因?yàn)?,,,所以,,?在中,,即①.,在中,,即②,因?yàn)椋寓佗趦墒较嗉涌傻茫?,解得:,則,故答案為:.15、84【解析】設(shè)公比為q,求出,再由通項(xiàng)公式代入可得結(jié)論【詳解】設(shè)公比為q,則,解得所以故答案為:8416、【解析】由兩直線平行的判定可得求解即可,注意驗(yàn)證是否出現(xiàn)直線重合的情況.【詳解】由題設(shè),,解得,經(jīng)檢驗(yàn)滿足題設(shè).故答案為:三、解答題:共70分。解答應(yīng)寫出文字說(shuō)明、證明過(guò)程或演算步驟。17、(1).(2)8.【解析】(1)將點(diǎn)代入拋物線方程可解得基本量.(2)設(shè)直線AB為,代入聯(lián)立得關(guān)于的一元二次方程,運(yùn)用韋達(dá)定理,得到關(guān)于的函數(shù)關(guān)系,再求函數(shù)最值.【小問(wèn)1詳解】當(dāng)l與拋物線的對(duì)稱軸垂直時(shí),,,則代入拋物線方程得,所以拋物線方程是【小問(wèn)2詳解】設(shè)點(diǎn),,直線AB方程為,聯(lián)立拋物線整理得:,,∴,,有,由A在第一象限,則,即,∴,可得,又O到AB的距離,∴,而,∴,,當(dāng),,單調(diào)遞減;,,單調(diào)遞增;∴的最小值為,此時(shí),.18、(1)證明見解析(2)【解析】(1)根據(jù)線面垂直的性質(zhì)可得,,如圖所示,以為坐標(biāo)原點(diǎn)建立空間直角坐標(biāo)系,證明即可得證;(2)求出平面與平面的法向量,再利用向量法即可得解.【小問(wèn)1詳解】證明:因?yàn)槠矫?,平面,平面,所以,且,因?yàn)?,如圖所示,以為坐標(biāo)原點(diǎn)建立空間直角坐標(biāo)系,則,,,,,,,所以,,,所以;【小問(wèn)2詳解】,設(shè)平面的法向量為,則,即,令,有,設(shè)平面的法向量為,則,即,令,有,設(shè)平面和平面的夾角為,,所以平面和平面的夾角的余弦值為19、(1)(2)【解析】(1)由定義法求出曲線C的方程;(2)先判斷出直線AB過(guò)定點(diǎn)H(2,0)或H(4,0).當(dāng)AB過(guò)定點(diǎn)H(4,0),求出最大;當(dāng)H(2,0)時(shí),可設(shè)直線AB:.用“設(shè)而不求法”表示出,不妨設(shè)(),利用函數(shù)的單調(diào)性求出△ABD面積的最大值.【小問(wèn)1詳解】因?yàn)榫€段PM的垂直平分線交半徑MQ于點(diǎn)C,所以,所以,符合橢圓的定義,所以點(diǎn)C的軌跡為以P、Q為焦點(diǎn)的橢圓,其中,所以,所以曲線C的方程為.【小問(wèn)2詳解】不妨設(shè)直線l:x=8交x軸于G(8,0),直線AB交x軸于H(h,0),則,.因?yàn)?,,,所?又因?yàn)榈拿娣e是△ABD面積的5倍,所以.因?yàn)镚(8,0),D(3,0),所以,所以H(2,0)或H(4,0).當(dāng)H(4,0)時(shí),則H與A(或H與B)重合,不妨設(shè)H與A重合,此時(shí),,要使△ABD面積最大,只需B在短軸頂點(diǎn)時(shí),=2最大,所以最大;當(dāng)H(2,0)時(shí),要想構(gòu)成三角形ABD,直線AB的斜率不為0,可設(shè)直線AB:.設(shè),則,消去x可得:,所以,,,所以.不妨設(shè)(),則,由對(duì)勾函數(shù)的性質(zhì)可知,在上單調(diào)遞減,所以當(dāng)t=4時(shí),,此時(shí)最大綜上所述,△ABD面積的最大值為.【點(diǎn)睛】(1)“設(shè)而不求”是一種在解析幾何中常見的解題方法,可以解決直線與二次曲線相交的問(wèn)題;(2)解析幾何中最值計(jì)算方法有兩類:①幾何法:利用幾何圖形求最值;②代數(shù)法:表示為函數(shù),利用函數(shù)求最值.20、(1)(2)或【解析】(1)根據(jù)焦距求出,利用面積最大值,得到求出,從而得到,求出橢圓方程;(2)分直線斜率存在和斜率不存在,結(jié)合題干條件得到,進(jìn)而求出直線方程.【小問(wèn)1詳解】∵∴,又的面積最大值,則,所以,從而,,故橢圓的方程為:;【小問(wèn)2詳解】①當(dāng)直線的斜率存在時(shí),設(shè),代入③整理得,設(shè)、,則,所以,點(diǎn)到直線的距離因?yàn)?,即,又由,得,所以?而,,即,解得:,此時(shí);②當(dāng)直線的斜率不存在時(shí),,直線交橢圓于點(diǎn)、.也有,經(jīng)檢驗(yàn),上述直線均滿足,綜上:直線的方程為或.【點(diǎn)睛】圓錐曲線中,有關(guān)向量的題目,要結(jié)合條件選擇不同的方法,一般思路有轉(zhuǎn)化為三角形面積,或者線段的比,或者由向量得到共線等.21、(1);(2)【解析】(1)由圓的一般式方程求出圓心代入直線即可求出得值,即可求解;(2)先計(jì)算圓心到直線的距離,利用即可求弦長(zhǎng).【詳解】(1)由圓,可得所以圓心為,半徑又圓心在直線上,即,解得所以圓的一般方程為,故圓的標(biāo)準(zhǔn)方程為(2)由(1)知,圓心,半徑圓心到直線的距離則直線被圓截得的弦的長(zhǎng)為所以,直線被圓截得弦的長(zhǎng)為【點(diǎn)睛】方法點(diǎn)睛:圓的弦長(zhǎng)的求法(1)幾何法,設(shè)圓的半徑為,弦心距為,弦長(zhǎng)為,則;(2)代數(shù)法,設(shè)直線與圓相交于,,聯(lián)立直線與圓的

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

最新文檔

評(píng)論

0/150

提交評(píng)論