版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
2026屆吉林省長春市第十九中學數學高二上期末統(tǒng)考模擬試題注意事項:1.答題前,考生先將自己的姓名、準考證號填寫清楚,將條形碼準確粘貼在考生信息條形碼粘貼區(qū)。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書寫,字體工整、筆跡清楚。3.請按照題號順序在各題目的答題區(qū)域內作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試題卷上答題無效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.若,則下列等式一定成立的是()A. B.C. D.2.北京大興國際機場的顯著特點之一是各種彎曲空間的運用,在數學上用曲率刻畫空間彎曲性.規(guī)定:多面體的頂點的曲率等于與多面體在該點的面角之和的差(多面體的面的內角叫做多面體的面角,角度用弧度制),多面體面上非頂點的曲率均為零,多面體的總曲率等于該多面體各頂點的曲率之和.例如:正四面體在每個頂點有個面角,每個面角是,所以正四面體在每個頂點的曲率為,故其總曲率為.給出下列三個結論:①正方體在每個頂點的曲率均為;②任意四棱錐總曲率均為;③若某類多面體的頂點數,棱數,面數滿足,則該類多面體的總曲率是常數.其中,所有正確結論的序號是()A.①② B.①③C.②③ D.①②③3.在等比數列中,,公比,則()A. B.6C. D.24.若數列滿足,則()A. B.C. D.5.直線l經過兩條直線和的交點,且平行于直線,則直線l的方程為()A. B.C. D.6.從編號分別為,,,,的五個大小完全相同的小球中,隨機取出三個小球,則恰有兩個小球編號相鄰的概率為()A. B.C. D.7.過橢圓+=1左焦點F1引直線交橢圓于A、B兩點,F2是橢圓的右焦點,則△ABF2的周長是()A.20 B.18C.10 D.168.已知,,則下列結論一定成立的是()A. B.C. D.9.已知圓,若存在過點的直線與圓C相交于不同兩點A,B,且,則實數a的取值范圍是()A. B.C. D.10.過點的直線與圓相切,則直線的方程為()A.或 B.或C.或 D.或11.若雙曲線(,)的一條漸近線經過點,則雙曲線的離心率為()A. B.C. D.212.已知圓的方程為,圓的方程為,其中.那么這兩個圓的位置關系不可能為()A.外離 B.外切C.內含 D.內切二、填空題:本題共4小題,每小題5分,共20分。13.直線l過點P(1,3),且它的一個方向向量為(2,1),則直線l的一般式方程為__________.14.曲線圍成的圖形的面積是__________15.已知函數的導函數為,,,則的解集為___________.16.已知四面體中,,分別在,上,且,,若,則________.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)(1)解不等式;(2)若關于x的不等式解集為R,求實數k的取值范圍.18.(12分)如圖,在四棱錐中,平面,是等邊三角形.(1)證明:平面平面.(2)求點到平面的距離.19.(12分)用長度為80米的護欄圍出一個一面靠墻的矩形運動場地,如圖所示,運動場地的一條邊記為(單位:米),面積記為(單位:平方米)(1)求關于的函數關系;(2)求的最大值20.(12分)(1)已知集合,.:,:,并且是的充分條件,求實數的取值范圍(2)已知:,,:,,若為假命題,求實數的取值范圍21.(12分)如圖,在直三棱柱中,,,,分別為,,的中點,點在棱上,且,,.(1)求證:平面;(2)求證:平面平面;(3)求平面與平面的距離.22.(10分)已知橢圓C:的右頂點為A,上頂點為B.離心率為,(1)求橢圓C的標準方程;(2)設橢圓的右焦點為F,過點F的直線l與橢圓C相交于D,E兩點,直線:與x軸相交于點H,過點D作,垂足為①求四邊形ODHE(O為坐標原點)面積的取值范圍;②證明:直線過定點G,并求點G的坐標
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、D【解析】利用復數除法運算和復數相等可用表示出,進而得到之間關系.【詳解】,,,則.故選:D.2、D【解析】根據曲率的定義依次判斷即可.【詳解】①根據曲率的定義可得正方體在每個頂點的曲率為,故①正確;②由定義可得多面體的總曲率頂點數各面內角和,因為四棱錐有5個頂點,5個面,分別為4個三角形和1個四邊形,所以任意四棱錐的總曲率為,故②正確;③設每個面記為邊形,則所有的面角和為,根據定義可得該類多面體的總曲率為常數,故③正確.故選:D.3、D【解析】利用等比數列的通項公式求解【詳解】由等比數列的通項公式得:.故選:D4、C【解析】利用前項積與通項的關系可求得結果.【詳解】由已知可得.故選:C.5、B【解析】聯立已知兩條直線方程求出交點,再根據兩直線平行則斜率相同求出斜率即可.【詳解】由得兩直線交點為(-1,0),直線l斜率與相同,為,則直線l方程為y-0=(x+1),即x-2y+1=0.故選:B.6、C【解析】利用古典概型計算公式計算即可【詳解】從編號分別為,,,,的五個大小完全相同的小球中,隨機取出三個小球共有種不同的取法,恰好有兩個小球編號相鄰的有:,共有6種所以概率為故選:C7、A【解析】根據橢圓的定義求得正確選項.【詳解】依題意,根據橢圓的定義可知,三角形的周長為.故選:A8、B【解析】根據不等式的同向可加性求解即可.【詳解】因為,所以,又,所以.故選:B.9、D【解析】根據圓的割線定理,結合圓的性質進行求解即可.【詳解】圓的圓心坐標為:,半徑,由圓的割線定理可知:,顯然有,或,因為,所以,于是有,因為,所以,而,或,所以,故選:D10、D【解析】根據斜率存在和不存在分類討論,斜率存在時設直線方程,由圓心到直線距離等于半徑求解【詳解】圓心為,半徑為2,斜率不存在時,直線滿足題意,斜率存在時,設直線方程為,即,由,得,直線方程為,即故選:D11、A【解析】先求出漸近線方程,進而將點代入直線方程得到a,b關系,進而求出離心率.【詳解】由題意,雙曲線的漸近線方程為:,而一條漸近線過點,則,.故選:A.12、C【解析】求出圓心距的取值范圍,然后利用圓心距與半徑的和差關系判斷.【詳解】由兩圓的標準方程可得,,,;則,所以兩圓不可能內含.故選:C.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】根據直線方向向量求出直線斜率即可得直線方程.【詳解】因為直線l的一個方向向量為(2,1),所以其斜率,所以l方程為:,即其一般式方程為:.故答案為:.14、【解析】當,時,已知方程是,即.它對應的曲線是第一象限內半圓?。òǘ它c),它的圓心為,半徑為.同理,當,;,;,時對應的曲線都是半圓?。ㄈ鐖D).它所圍成的面積是.故答案為15、【解析】根據,構造函數,利用其單調性求解.【詳解】因為,所以,令,則,,所以是減函數,又,即,,所以,所以,則的解集為故答案為:16、【解析】連接,根據題意,結合空間向量加減法運算求解即可.【詳解】解:連接∵四面體中,,分別在,上,且,∴∴∴.故答案為:三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1);(2).【解析】(1)直接求解不含參數的一元二次不等式即可;(2)分與兩種情況進行討論即可求出結果.【詳解】(1)不等式可化為,解集為(2)若的解集為R,當時,的解集為,不合題意;當時,則解得綜上,實數k的取值范圍是18、(1)證明見解析;(2).【解析】(1)根據等邊三角形的性質、線面垂直的性質,結合面面垂直的判定定理進行證明即可;(2)利用余弦定理,結合三棱錐的等積性進行求解即可.【小問1詳解】證明:設,因為是等邊三角形,且,所以是的中點,則.又,所以,所以,即.又平面平面,所以.又,所以平面.因為平面,所以平面平面.【小問2詳解】解:因為,所以.在中,,所以,則又平面,所以.如圖,連接,則,所以.設點到平面的距離為,因為,所以,解得,即點到平面的距離為.19、(1)(2)平方米【解析】(1)由題意得矩形場地的另一邊長為80-2x米,通過矩形面積得出關于的函數表達式;(2)利用二次函數的性質求出的最大值即可【小問1詳解】解:由題意得矩形場地的另一邊長為80-2x米,又,得,所以【小問2詳解】解:由(1)得,當且僅當時,函數取得最大值平方米20、(1);(2)【解析】(1)由二次函數的性質,求得,又由,求得集合,根據命題是命題的充分條件,所以,列出不等式,即可求解(2)依題意知,均為假命題,分別求得實數的取值范圍,即可求解【詳解】(1)由,∵,∴,,∴,所以集合,由,得,所以集合,因為命題是命題的充分條件,所以,則,解得或,∴實數的取值范圍是.(2)依題意知,,均為假命題,當是假命題時,恒成立,則有,當是假命題時,則有,或.所以由均為假命題,得,即.【點睛】本題主要考查了復合命題的真假求參數,以及充要條件的應用,其中解答中正確得出集合間的關系,列出不等式,以及根據復合命題的真假關系求解是解答的關鍵,著重考查了推理與運算能力,屬于基礎題21、(1)見解析(2)見解析(3)【解析】(1)利用勾股定理證得,證明平面,根據線面垂直的性質證得,再根據線面垂直的判定定理即可得證;(2)取的中點,連接,可得為的中點,證明,四邊形是平行四邊形,可得,再根據面面平行的判定定理即可得證;(3)設,由(1)(2)可得即為平面與平面的距離,求出的長度,即可得解.【小問1詳解】證明:在直三棱柱中,為的中點,,,故,因為,所以,又平面,平面,所以,又因,,所以平面,又平面,所以,又,所以平面;【小問2詳解】證明:取的中點,連接,則為的中點,因為,,分別為,,的中點,所以,且,所以四邊形是平行四邊形,所以,所以,又平面,平面,所以平面,因為,所以,又平面,平面,所以平面,又因,平面,平面,所以平面平面;【小問3詳解】設,因為平面,平面平面,所以平面,所以即為平面與平面的距離,因平面,所以,,所以,即平面與平面的距離為.22、(1
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 養(yǎng)老院員工培訓與考核制度
- 養(yǎng)老院工作人員請假及調休制度
- 企業(yè)食堂安全管理制度
- 醫(yī)療凈化項目環(huán)評報告
- CCAA - 第二篇:合格評定答案及解析 - 詳解版(161題)
- 2025年廣州市第十二人民醫(yī)院招聘考試真題
- 鎂電解工崗前環(huán)保知識考核試卷含答案
- 竹藤編藝師崗前核心技能考核試卷含答案
- 我國上市公司并購協同效應的深度剖析與策略優(yōu)化
- 獸醫(yī)化驗員創(chuàng)新方法強化考核試卷含答案
- 柴油維修技術培訓課件
- 安全附件管理制度規(guī)范
- 2026院感知識考試題及答案
- 《紅樓夢》導讀 (教學課件) -高中語文人教統(tǒng)編版必修下冊
- DL∕T 5210.6-2019 電力建設施工質量驗收規(guī)程 第6部分:調整試驗
- GB/T 16927.1-2011高電壓試驗技術第1部分:一般定義及試驗要求
- 政府會計準則優(yōu)秀課件
- 陣發(fā)性室性心動過速課件
- 無機與分析化學理論教案
- 名詞性從句 講義-英語高考一輪復習語法部分
- T∕ZZB 2722-2022 鏈板式自動排屑裝置
評論
0/150
提交評論