2026屆江蘇省鹽城市鹽都區(qū)數(shù)學高三上期末考試模擬試題含解析_第1頁
2026屆江蘇省鹽城市鹽都區(qū)數(shù)學高三上期末考試模擬試題含解析_第2頁
2026屆江蘇省鹽城市鹽都區(qū)數(shù)學高三上期末考試模擬試題含解析_第3頁
2026屆江蘇省鹽城市鹽都區(qū)數(shù)學高三上期末考試模擬試題含解析_第4頁
2026屆江蘇省鹽城市鹽都區(qū)數(shù)學高三上期末考試模擬試題含解析_第5頁
已閱讀5頁,還剩13頁未讀, 繼續(xù)免費閱讀

付費下載

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

2026屆江蘇省鹽城市鹽都區(qū)數(shù)學高三上期末考試模擬試題考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應位置上。2.請用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準考證號。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無效。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知等差數(shù)列的前項和為,若,,則數(shù)列的公差為()A. B. C. D.2.設復數(shù)滿足為虛數(shù)單位),則()A. B. C. D.3.已知,,,則的大小關系為()A. B. C. D.4.設m,n為直線,、為平面,則的一個充分條件可以是()A.,, B.,C., D.,5.已知函數(shù)的圖像的一條對稱軸為直線,且,則的最小值為()A. B.0 C. D.6.已知Sn為等比數(shù)列{an}的前n項和,a5=16,a3a4=﹣32,則S8=()A.﹣21 B.﹣24 C.85 D.﹣857.三棱柱中,底面邊長和側棱長都相等,,則異面直線與所成角的余弦值為()A. B. C. D.8.已知函數(shù),下列結論不正確的是()A.的圖像關于點中心對稱 B.既是奇函數(shù),又是周期函數(shù)C.的圖像關于直線對稱 D.的最大值是9.已知函數(shù)與的圖象有一個橫坐標為的交點,若函數(shù)的圖象的縱坐標不變,橫坐標變?yōu)樵瓉淼谋逗?,得到的函?shù)在有且僅有5個零點,則的取值范圍是()A. B.C. D.10.函數(shù)的部分圖象大致為()A. B.C. D.11.已知直線是曲線的切線,則()A.或1 B.或2 C.或 D.或112.下列函數(shù)中既關于直線對稱,又在區(qū)間上為增函數(shù)的是()A.. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.小李參加有關“學習強國”的答題活動,要從4道題中隨機抽取2道作答,小李會其中的三道題,則抽到的2道題小李都會的概率為_____.14.已知等比數(shù)列滿足公比,為其前項和,,,構成等差數(shù)列,則_______.15.某大學、、、四個不同的專業(yè)人數(shù)占本??側藬?shù)的比例依次為、、、,現(xiàn)欲采用分層抽樣的方法從這四個專業(yè)的總人數(shù)中抽取人調查畢業(yè)后的就業(yè)情況,則專業(yè)應抽取_________人.16.若函數(shù)為自然對數(shù)的底數(shù))在和兩處取得極值,且,則實數(shù)的取值范圍是______.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)已知函數(shù).(1)證明:當時,;(2)若函數(shù)有三個零點,求實數(shù)的取值范圍.18.(12分)在平面直角坐標系中,以原點O為極點,x軸的正半軸為極軸建立極坐標系,兩種坐標系中取相同的長度單位.已知直線l的參數(shù)方程為(t為參數(shù)),曲線C的極坐標方程為ρ=4sin(θ+).(1)求直線l的普通方程與曲線C的直角坐標方程;(2)若直線l與曲線C交于M,N兩點,求△MON的面積.19.(12分)已知a>0,證明:1.20.(12分)已知函數(shù).(1)若是的極值點,求的極大值;(2)求實數(shù)的范圍,使得恒成立.21.(12分)已知中,角所對邊的長分別為,且(1)求角的大??;(2)求的值.22.(10分)已知函數(shù)存在一個極大值點和一個極小值點.(1)求實數(shù)a的取值范圍;(2)若函數(shù)的極大值點和極小值點分別為和,且,求實數(shù)a的取值范圍.(e是自然對數(shù)的底數(shù))

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、D【解析】

根據(jù)等差數(shù)列公式直接計算得到答案.【詳解】依題意,,故,故,故,故選:D.【點睛】本題考查了等差數(shù)列的計算,意在考查學生的計算能力.2、B【解析】

易得,分子分母同乘以分母的共軛復數(shù)即可.【詳解】由已知,,所以.故選:B.【點睛】本題考查復數(shù)的乘法、除法運算,考查學生的基本計算能力,是一道容易題.3、A【解析】

根據(jù)指數(shù)函數(shù)與對數(shù)函數(shù)的單調性,借助特殊值即可比較大小.【詳解】因為,所以.因為,所以,因為,為增函數(shù),所以所以,故選:A.【點睛】本題主要考查了指數(shù)函數(shù)、對數(shù)函數(shù)的單調性,利用單調性比較大小,屬于中檔題.4、B【解析】

根據(jù)線面垂直的判斷方法對選項逐一分析,由此確定正確選項.【詳解】對于A選項,當,,時,由于不在平面內,故無法得出.對于B選項,由于,,所以.故B選項正確.對于C選項,當,時,可能含于平面,故無法得出.對于D選項,當,時,無法得出.綜上所述,的一個充分條件是“,”故選:B【點睛】本小題主要考查線面垂直的判斷,考查充分必要條件的理解,屬于基礎題.5、D【解析】

運用輔助角公式,化簡函數(shù)的解析式,由對稱軸的方程,求得的值,得出函數(shù)的解析式,集合正弦函數(shù)的最值,即可求解,得到答案.【詳解】由題意,函數(shù)為輔助角,由于函數(shù)的對稱軸的方程為,且,即,解得,所以,又由,所以函數(shù)必須取得最大值和最小值,所以可設,,所以,當時,的最小值,故選D.【點睛】本題主要考查了正弦函數(shù)的圖象與性質,其中解答中利用三角恒等變換的公式,化簡函數(shù)的解析式,合理利用正弦函數(shù)的對稱性與最值是解答的關鍵,著重考查了分析問題和解答問題的能力,屬于中檔試題.6、D【解析】

由等比數(shù)列的性質求得a1q4=16,a12q5=﹣32,通過解該方程求得它們的值,求首項和公比,根據(jù)等比數(shù)列的前n項和公式解答即可.【詳解】設等比數(shù)列{an}的公比為q,∵a5=16,a3a4=﹣32,∴a1q4=16,a12q5=﹣32,∴q=﹣2,則,則,故選:D.【點睛】本題主要考查等比數(shù)列的前n項和,根據(jù)等比數(shù)列建立條件關系求出公比是解決本題的關鍵,屬于基礎題.7、B【解析】

設,,,根據(jù)向量線性運算法則可表示出和;分別求解出和,,根據(jù)向量夾角的求解方法求得,即可得所求角的余弦值.【詳解】設棱長為1,,,由題意得:,,,又即異面直線與所成角的余弦值為:本題正確選項:【點睛】本題考查異面直線所成角的求解,關鍵是能夠通過向量的線性運算、數(shù)量積運算將問題轉化為向量夾角的求解問題.8、D【解析】

通過三角函數(shù)的對稱性以及周期性,函數(shù)的最值判斷選項的正誤即可得到結果.【詳解】解:,正確;,為奇函數(shù),周期函數(shù),正確;,正確;D:,令,則,,,,則時,或時,即在上單調遞增,在和上單調遞減;且,,,故D錯誤.故選:.【點睛】本題考查三角函數(shù)周期性和對稱性的判斷,利用導數(shù)判斷函數(shù)最值,屬于中檔題.9、A【解析】

根據(jù)題意,,求出,所以,根據(jù)三角函數(shù)圖像平移伸縮,即可求出的取值范圍.【詳解】已知與的圖象有一個橫坐標為的交點,則,,,,,若函數(shù)圖象的縱坐標不變,橫坐標變?yōu)樵瓉淼谋?,則,所以當時,,在有且僅有5個零點,,.故選:A.【點睛】本題考查三角函數(shù)圖象的性質、三角函數(shù)的平移伸縮以及零點個數(shù)問題,考查轉化思想和計算能力.10、B【解析】

圖像分析采用排除法,利用奇偶性判斷函數(shù)為奇函數(shù),再利用特值確定函數(shù)的正負情況?!驹斀狻?,故奇函數(shù),四個圖像均符合。當時,,,排除C、D當時,,,排除A。故選B?!军c睛】圖像分析采用排除法,一般可供判斷的主要有:奇偶性、周期性、單調性、及特殊值。11、D【解析】

求得直線的斜率,利用曲線的導數(shù),求得切點坐標,代入直線方程,求得的值.【詳解】直線的斜率為,對于,令,解得,故切點為,代入直線方程得,解得或1.故選:D【點睛】本小題主要考查根據(jù)切線方程求參數(shù),屬于基礎題.12、C【解析】

根據(jù)函數(shù)的對稱性和單調性的特點,利用排除法,即可得出答案.【詳解】A中,當時,,所以不關于直線對稱,則錯誤;B中,,所以在區(qū)間上為減函數(shù),則錯誤;D中,,而,則,所以不關于直線對稱,則錯誤;故選:C.【點睛】本題考查函數(shù)基本性質,根據(jù)函數(shù)的解析式判斷函數(shù)的對稱性和單調性,屬于基礎題.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】

從四道題中隨機抽取兩道共6種情況,抽到的兩道全都會的情況有3種,即可得到概率.【詳解】由題:從從4道題中隨機抽取2道作答,共有種,小李會其中的三道題,則抽到的2道題小李都會的情況共有種,所以其概率為.故答案為:【點睛】此題考查根據(jù)古典概型求概率,關鍵在于根據(jù)題意準確求出基本事件的總數(shù)和某一事件包含的基本事件個數(shù).14、0【解析】

利用等差中項以及等比數(shù)列的前項和公式即可求解.【詳解】由,,是等差數(shù)列可知因為,所以,故答案為:0【點睛】本題考查了等差中項的應用、等比數(shù)列的前項和公式,需熟記公式,屬于基礎題.15、【解析】

求出專業(yè)人數(shù)在、、、四個專業(yè)總人數(shù)的比例后可得.【詳解】由題意、、、四個不同的專業(yè)人數(shù)的比例為,故專業(yè)應抽取的人數(shù)為.故答案為:1.【點睛】本題考查分層抽樣,根據(jù)分層抽樣的定義,在各層抽取樣本數(shù)量是按比例抽取的.16、【解析】

先將函數(shù)在和兩處取得極值,轉化為方程有兩不等實根,且,再令,將問題轉化為直線與曲線有兩交點,且橫坐標滿足,用導數(shù)方法研究單調性,作出簡圖,求出時,的值,進而可得出結果.【詳解】因為,所以,又函數(shù)在和兩處取得極值,所以是方程的兩不等實根,且,即有兩不等實根,且,令,則直線與曲線有兩交點,且交點橫坐標滿足,又,由得,所以,當時,,即函數(shù)在上單調遞增;當,時,,即函數(shù)在和上單調遞減;當時,由得,此時,因此,由得.故答案為【點睛】本題主要考查導數(shù)的應用,已知函數(shù)極值點間的關系求參數(shù)的問題,通常需要將函數(shù)極值點,轉化為導函數(shù)對應方程的根,再轉化為直線與曲線交點的問題來處理,屬于??碱}型.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1)見解析;(2)【解析】

(1)要證明,只需證明即可;(2)有3個根,可轉化為有3個根,即與有3個不同交點,利用導數(shù)作出的圖象即可.【詳解】(1)令,則,當時,,故在上單調遞增,所以,即,所以.(2)由已知,,依題意,有3個零點,即有3個根,顯然0不是其根,所以有3個根,令,則,當時,,當時,,當時,,故在單調遞減,在,上單調遞增,作出的圖象,易得.故實數(shù)的取值范圍為.【點睛】本題考查利用導數(shù)證明不等式以及研究函數(shù)零點個數(shù)問題,考查學生數(shù)形結合的思想,是一道中檔題.18、(1)直線l的普通方程為x+y-4=0.曲線C的直角坐標方程是圓:(x-)2+(y-1)2=4.(2)4【解析】

(1)將直線l參數(shù)方程中的消去,即可得直線l的普通方程,對曲線C的極坐標方程兩邊同時乘以,利用可得曲線C的直角坐標方程;(2)求出點到直線的距離,再求出的弦長,從而得出△MON的面積.【詳解】解:(1)由題意有,得,x+y=4,直線l的普通方程為x+y-4=0.因為ρ=4sin所以ρ=2sinθ+2cosθ,兩邊同時乘以得,ρ2=2ρsinθ+2ρcosθ,因為,所以x2+y2=2y+2x,即(x-)2+(y-1)2=4,∴曲線C的直角坐標方程是圓:(x-)2+(y-1)2=4.(2)∵原點O到直線l的距離直線l過圓C的圓心(,1),∴|MN|=2r=4,所以△MON的面積S=|MN|×d=4.【點睛】本題考查了直線與圓的極坐標方程與普通方程、參數(shù)方程與普通方程的互化知識,解題的關鍵是正確使用這一轉化公式,還考查了直線與圓的位置關系等知識.19、證明見解析【解析】

利用分析法,證明a即可.【詳解】證明:∵a>0,∴a1,∴a1≥0,∴要證明1,只要證明a1(a)1﹣4(a)+4,只要證明:a,∵a1,∴原不等式成立.【點睛】本題考查不等式的證明,著重考查分析法的運用,考查推理論證能力,屬于中檔題.20、(1).(2)【解析】

(1)先對函數(shù)求導,結合極值存在的條件可求t,然后結合導數(shù)可研究函數(shù)的單調性,進而可求極大值;(2)由已知代入可得,x2+(t﹣2)x﹣tlnx≥0在x>0時恒成立,構造函數(shù)g(x)=x2+(t﹣2)x﹣tlnx,結合導數(shù)及函數(shù)的性質可求.【詳解】(1),x>0,由題意可得,0,解可得t=﹣4,∴,易得,當x>2,0<x<1時,f′(x)>0,函數(shù)單調遞增,當1<x<2時,f′(x)<0,函數(shù)單調遞減,故當x=1時,函數(shù)取得極大值f(1)=﹣3;(2)由f(x)=x2+(t﹣2)x﹣tlnx+2≥2在x>0時恒成立可得,x2+(t﹣2)x﹣tlnx≥0在x>0時恒成立,令g(x)=x2+(t﹣2)x﹣tlnx,則,(i)當t≥0時,g(x)在(0,1)上單調遞減,在(1,+∞)上單調遞增,所以g(x)min=g(1)=t﹣1≥0,解可得t≥1,(ii)當﹣2<t<0時,g(x)在()上單調遞減,在(0,),(1,+∞)上單調遞增,此時g(1)=t﹣1<﹣1不合題意,舍去;(iii)當t=﹣2時,g′(x)0,即g(x)在(0,+∞)上單調遞增,此時g(1)=﹣3不合題意;(iv)當t<﹣2時,g(x)在(1,)上單調遞減,在(0,1),()上單調遞增,此時g(1)=t﹣1<﹣3不合題意,綜上,t≥1時,f(x)≥2恒成立.【點睛】本題主要考查了利用導數(shù)求解函數(shù)的單調性及極值,利用導數(shù)與函數(shù)的性質處理不等式的恒成立問題,分類討論思想,屬于中檔題.21、(1);(2).【解析】

(1)正弦定理的邊角轉換,以及兩角和的正弦公式展開,特殊角的余弦值即可求出答案;(2)構造齊次式,利用正弦定理的邊角轉換,得到,結合余弦定理得到【詳解】解:(1)由已知,得又∵∴∴,因為得∵∴.(2)∵又由余弦定理,得∴【點睛】1.考查學生對正余弦定理的綜合應用;2.能處理基本的邊角轉換問題;

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論