2023屆貴州省清鎮(zhèn)市九年級數(shù)學(xué)第一學(xué)期期末綜合測試試題含解析_第1頁
2023屆貴州省清鎮(zhèn)市九年級數(shù)學(xué)第一學(xué)期期末綜合測試試題含解析_第2頁
2023屆貴州省清鎮(zhèn)市九年級數(shù)學(xué)第一學(xué)期期末綜合測試試題含解析_第3頁
2023屆貴州省清鎮(zhèn)市九年級數(shù)學(xué)第一學(xué)期期末綜合測試試題含解析_第4頁
2023屆貴州省清鎮(zhèn)市九年級數(shù)學(xué)第一學(xué)期期末綜合測試試題含解析_第5頁
已閱讀5頁,還剩16頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

2022-2023學(xué)年九上數(shù)學(xué)期末模擬試卷注意事項:1.答題前,考生先將自己的姓名、準(zhǔn)考證號填寫清楚,將條形碼準(zhǔn)確粘貼在考生信息條形碼粘貼區(qū)。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書寫,字體工整、筆跡清楚。3.請按照題號順序在各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試題卷上答題無效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準(zhǔn)使用涂改液、修正帶、刮紙刀。一、選擇題(每小題3分,共30分)1.二次函數(shù)的圖象如圖所示,下列結(jié)論:;;;;,其中正確結(jié)論的是A. B. C. D.2.下列方程中,沒有實數(shù)根的方程是()A.(x-1)2=2C.3x23.如圖,在邊長為1的正方形組成的網(wǎng)格中,△ABC的頂點都在格點上,將△ABC繞點C順時針旋轉(zhuǎn)60°,則頂點A所經(jīng)過的路徑長為()A.10π B.C.π D.π4.如圖,△∽△,若,,,則的長是()A.2 B.3 C.4 D.55.如圖,若點P在反比例函數(shù)y=(k≠0)的圖象上,過點P作PM⊥x軸于點M,PN⊥y軸于點N,若矩形PMON的面積為6,則k的值是()A.-3 B.3 C.-6 D.66.如圖,是岑溪市幾個地方的大致位置的示意圖,如果用表示孔廟的位置,用表示東山公園的位置,那么體育場的位置可表示為()A. B. C. D.7.下列函數(shù)的圖象,不經(jīng)過原點的是()A. B.y=2x2 C.y=(x﹣1)2﹣1 D.8.如圖,AB,AM,BN分別是⊙O的切線,切點分別為P,M,N.若MN∥AB,∠A=60°,AB=6,則⊙O的半徑是()A. B.3 C. D.9.如圖所示,二次函數(shù)的圖像與軸的一個交點坐標(biāo)為,則關(guān)于的一元二次方程的解為()A. B. C. D.10.按如下方法,將△ABC的三邊縮小到原來的,如圖,任取一點O,連結(jié)AO,BO,CO,并取它們的中點D、E、F,得△DEF;則下列說法錯誤的是()A.點O為位似中心且位似比為1:2B.△ABC與△DEF是位似圖形C.△ABC與△DEF是相似圖形D.△ABC與△DEF的面積之比為4:1二、填空題(每小題3分,共24分)11.已知(x、y、z均不為零),則_____________.12.如圖,在矩形ABCD中,AB=2,BC=4,點E、F分別在BC、CD上,若AE=,∠EAF=45°,則AF的長為_____.13.□ABCD的兩條對角線AC、BD相交于O,現(xiàn)從下列條件:①AC⊥BD②AB=BC③AC=BD④∠ABD=∠CBD中隨機取一個作為條件,可推出□ABCD是菱形的概率是_________14.如圖,直線y=+4與x軸、y軸分別交于A、B兩點,把△AOB繞點A順時針旋轉(zhuǎn)90°后得到△AO′B′,則點B′的坐標(biāo)是_________.15.已知正六邊形的邊長為10,那么它的外接圓的半徑為_____.16.小勇第一次拋一枚質(zhì)地均勻的硬幣時正面向上,他第二次再拋這枚硬幣時,正面向上的概率是.17.雙曲線、在第一象限的圖像如圖,,過上的任意一點,作軸的平行線交于,交軸于,若,則的解析式是_____________.18.如圖,,,是上的三個點,四邊形是平行四邊形,連接,,若,則_____.三、解答題(共66分)19.(10分)如圖,在下列(邊長為1)的網(wǎng)格中,已知的三個頂點,,在格點上,請分別按不同要求在網(wǎng)格中描出一個點,并寫出點的坐標(biāo).(1)經(jīng)過,,三點有一條拋物線,請在圖1中描出點,使點落在格點上,同時也落在這條拋物線上;則點的坐標(biāo)為______;(2)經(jīng)過,,三點有一個圓,請用無刻度的直尺在圖2中畫出圓心;則點的坐標(biāo)為______.20.(6分)圖中是拋物線拱橋,點P處有一照明燈,水面OA寬4m,以O(shè)為原點,OA所在直線為x軸建立平面直角坐標(biāo)系,已知點P的坐標(biāo)為(3,).(1)求這條拋物線的解析式;(2)水面上升1m,水面寬是多少?21.(6分)如圖,一次函數(shù)y=kx+b的圖象分別交x軸,y軸于A(4.0),B(0,2)兩點,與反比例函數(shù)y=的圖象交于C.D兩點,CE⊥x軸于點E且CE=1.(1)求反比例函數(shù)與一次函數(shù)的解析式;(2)根據(jù)圖象直接寫出:不等式0<kx+b<的解集.22.(8分)解方程:x(x-2)+x-2=1.23.(8分)如圖,一塊三角形的鐵皮,邊為,邊上的高為,要將它加工成矩形鐵皮,使它的的一邊在上,其余兩個頂點、分別在、上,(1)若四邊形是正方形,那么正方形邊長是多少?(2)在矩形EFGH中,設(shè),,①求與的函數(shù)關(guān)系,并求出自變量的取值范圍;②取多少時,有最大值,最大值是多少?24.(8分)用一根長12的鐵絲能否圍成面積是7的矩形?請通過計算說明理由.25.(10分)如圖,拋物線的對稱軸是直線,且與軸相交于A,B兩點(點B在點A的右側(cè)),與軸交于點C.(1)求拋物線的解析式和A,B兩點的坐標(biāo);(2)若點P是拋物線上B、C兩點之間的一個動點(不與B,C重合),則是否存在一點P,使△BPC的面積最大?若存在,請求出△BPC的最大面積;若不存在,試說明理由.26.(10分)小堯用“描點法”畫二次函數(shù)的圖像,列表如下:x…-4-3-2-1012…y…50-3-4-30-5…(1)由于粗心,小堯算錯了其中的一個y值,請你指出這個算錯的y值所對應(yīng)的x=;(2)在圖中畫出這個二次函數(shù)的圖像;(3)當(dāng)y≥5時,x的取值范圍是.

參考答案一、選擇題(每小題3分,共30分)1、C【分析】利用圖象信息以及二次函數(shù)的性質(zhì)一一判斷即可;【詳解】解:∵拋物線開口向下,∴a<0,∵對稱軸x=﹣1=,∴b<0,∵拋物線交y軸于正半軸,∴c>0,∴abc>0,故①正確,∵拋物線與x軸有兩個交點,∴b2﹣4ac>0,故②錯誤,∵x=﹣2時,y>0,∴4a﹣2b+c>0,∴4a+c>2b,故③正確,∵x=﹣1時,y>0,x=1時,y<0,∴a﹣b+c>0,a+b+c<0,∴(a﹣b+c)(a+b+c)<0∴,∴,故④錯誤,∵x=﹣1時,y取得最大值a﹣b+c,∴ax2+bx+c≤a﹣b+c,∴x(ax+b)≤a﹣b,故⑤正確.故選C.【點睛】本題考查二次函數(shù)的圖象與系數(shù)的關(guān)系等知識,解題的關(guān)鍵是讀懂圖象信息,靈活運用所學(xué)知識解決問題,屬于中考??碱}型.2、D【解析】先把方程化為一般式,再分別計算各方程的判別式的值,然后根據(jù)判別式的意義判斷方程根的情況.【詳解】解:A、方程化為一般形式為:x2-2x-1=0,△=(?2)2?4×1×(?1)=8>0,方程有兩個不相等的實數(shù)根,所以B、方程化為一般形式為:2x2-x-3=0,△=(?1)2?4×2×(?3)=25>0,方程有兩個不相等的實數(shù)根,所以C、△=(?2)2?4×3×(?1)=16>0,方程有兩個不相等的實數(shù)根,所以C選項錯誤;D、△=22?4×1×4=?12<0,方程沒有實數(shù)根,所以D選項正確.故選:D.【點睛】本題考查了一元二次方程ax2+bx+c=0(a≠0)的根的判別式△=b2?4ac:當(dāng)△>0,方程有兩個不相等的實數(shù)根;當(dāng)△=0,方程有兩個相等的實數(shù)根;當(dāng)△<0,方程沒有實數(shù)根.3、C【詳解】如圖所示:在Rt△ACD中,AD=3,DC=1,根據(jù)勾股定理得:AC=,又將△ABC繞點C順時針旋轉(zhuǎn)60°,則頂點A所經(jīng)過的路徑長為l=.故選C.4、C【分析】根據(jù)相似三角形的性質(zhì),列出對應(yīng)邊的比,再根據(jù)已知條件即可快速作答.【詳解】解:∵△∽△∴∴解得:AB=4故答案為C.【點睛】本題主要考查了相似三角形的性質(zhì),解題的關(guān)鍵是找對相似三角形的對應(yīng)邊,并列出比例進行求解.5、C【解析】設(shè)PN=a,PM=b,則ab=6,∵P點在第二象限,∴P(-a,b),代入y=中,得k=-ab=-6,故選C.6、A【分析】根據(jù)孔廟和東山公園的位置,可知坐標(biāo)軸的原點、單位長度、坐標(biāo)軸的正方向,據(jù)此建立平面直角坐標(biāo)系,從而可得體育場的位置.【詳解】由題意可建立如下圖所示的平面直角坐標(biāo)系:平面直角坐標(biāo)系中,原點O表示孔廟的位置,點A表示東山公園的位置,點B表示體育場的位置則點B的坐標(biāo)為故選:A.【點睛】本題考查了已知點在平面直角坐標(biāo)系中的位置求其坐標(biāo),依據(jù)題意正確建立平面直角坐標(biāo)系是解題關(guān)鍵.7、D【分析】根據(jù)函數(shù)圖象上的點的坐標(biāo)特征可以知道,經(jīng)過原點的函數(shù)圖象,點(0,0)一定在函數(shù)的解析式上;反之,點(0,0)一定不在函數(shù)的解析式上.【詳解】解:A、當(dāng)x=0時,y=0,即該函數(shù)圖象一定經(jīng)過原點(0,0).故本選項錯誤;B、當(dāng)x=0時,y=0,即該函數(shù)圖象一定經(jīng)過原點(0,0).故本選項錯誤;C、當(dāng)x=0時,y=0,即該函數(shù)圖象一定經(jīng)過原點(0,0).故本選項錯誤;D、當(dāng)x=0時,原方程無解,即該函數(shù)圖象一定不經(jīng)過原點(0,0).故本選項正確.故選:D.【點睛】本題考查了函數(shù)的圖象,熟悉正比例函數(shù),二次函數(shù)和反比例函數(shù)圖象的特點是解題關(guān)鍵.8、D【分析】根據(jù)題意可判斷四邊形ABNM為梯形,再由切線的性質(zhì)可推出∠ABN=60°,從而判定△APO≌△BPO,可得AP=BP=3,在直角△APO中,利用三角函數(shù)可解出半徑的值.【詳解】解:連接OP,OM,OA,OB,ON∵AB,AM,BN分別和⊙O相切,∴∠AMO=90°,∠APO=90°,∵MN∥AB,∠A=60°,∴∠AMN=120°,∠OAB=30°,∴∠OMN=∠ONM=30°,∵∠BNO=90°,∴∠ABN=60°,∴∠ABO=30°,在△APO和△BPO中,,△APO≌△BPO(AAS),∴AP=AB=3,∴tan∠OAP=tan30°==,∴OP=,即半徑為.故選D.【點睛】本題考查了切線的性質(zhì),切線長定理,解直角三角形,全等三角形的判定和性質(zhì),關(guān)鍵是說明點P是AB中點,難度不大.9、B【分析】先確定拋物線的對稱軸,然后根據(jù)拋物線的對稱性確定圖象與x軸的另一個交點,再根據(jù)二次函數(shù)與一元二次方程的關(guān)系解答即可.【詳解】解:∵二次函數(shù)的對稱軸是直線,圖象與軸的一個交點坐標(biāo)為,∴圖象與軸的另一個交點坐標(biāo)為(﹣1,0),∴一元二次方程的解為.故選:B.【點睛】本題考查了二次函數(shù)的圖象與性質(zhì)以及二次函數(shù)與一元二次方程的關(guān)系,屬于??碱}型,熟練掌握基本知識是解題的關(guān)鍵.10、A【分析】根據(jù)位似圖形的性質(zhì),得出①△ABC與△DEF是位似圖形進而根據(jù)位似圖形一定是相似圖形得出②△ABC與△DEF是相似圖形,再根據(jù)周長比等于位似比,以及根據(jù)面積比等于相似比的平方,即可得出答案.【詳解】∵如圖,任取一點O,連結(jié)AO,BO,CO,并取它們的中點D、E、F,得△DEF,∴將△ABC的三邊縮小到原來的,此時點O為位似中心且△ABC與△DEF的位似比為2:1,故選項A說法錯誤,符合題意;△ABC與△DEF是位似圖形,故選項B說法正確,不合題意;△ABC與△DEF是相似圖形,故選項C說法正確,不合題意;△ABC與△DEF的面積之比為4:1,故選項D說法正確,不合題意;故選:A.【點睛】此題主要考查了位似圖形的性質(zhì),正確的記憶位似圖形性質(zhì)是解決問題的關(guān)鍵.二、填空題(每小題3分,共24分)11、【分析】根據(jù)題意,可設(shè)x=5k,y=4k,z=3k,將其代入分式即可.【詳解】解:∵∴設(shè)x=5k,y=4k,z=3k,將其代入分式中得:.

故答案為.【點睛】本題考查了比例的性質(zhì),解此類題可根據(jù)分式的基本性質(zhì)先用未知數(shù)k表示出x,y,z,再代入計算.12、【解析】分析:取AB的中點M,連接ME,在AD上截取ND=DF,設(shè)DF=DN=x,則NF=x,再利用矩形的性質(zhì)和已知條件證明△AME∽△FNA,利用相似三角形的性質(zhì):對應(yīng)邊的比值相等可求出x的值,在直角三角形ADF中利用勾股定理即可求出AF的長.詳解:取AB的中點M,連接ME,在AD上截取ND=DF,設(shè)DF=DN=x,∵四邊形ABCD是矩形,∴∠D=∠BAD=∠B=90°,AD=BC=4,∴NF=x,AN=4﹣x,∵AB=2,∴AM=BM=1,∵AE=,AB=2,∴BE=1,∴ME=,∵∠EAF=45°,∴∠MAE+∠NAF=45°,∵∠MAE+∠AEM=45°,∴∠MEA=∠NAF,∴△AME∽△FNA,∴,∴,解得:x=∴AF=故答案為.點睛:本題考查了矩形的性質(zhì)、相似三角形的判斷和性質(zhì)以及勾股定理的運用,正確添加輔助線構(gòu)造相似三角形是解題的關(guān)鍵,13、【分析】根據(jù)菱形的判定方法直接就可得出推出菱形的概率.【詳解】根據(jù)“對角線互相垂直的平行四邊形是菱形”直接判斷①符合題意;根據(jù)“一組鄰邊相等的平行四邊形是菱形”可直接判斷②符合題意;根據(jù)“對角線相等的平行四邊形是矩形”,所以③不符合菱形的判定方法;,,BC=CD,是菱形,故④符合題意;推出菱形的概率為:.故答案為.【點睛】本題主要考查菱形的判定及概率,熟記菱形的判定方法是解題的關(guān)鍵,然后根據(jù)概率的求法直接得出答案.14、(1,3)【分析】首先根據(jù)直線AB求出點A和點B的坐標(biāo),結(jié)合旋轉(zhuǎn)的性質(zhì)可知點B′的橫坐標(biāo)等于OA與OB的長度之和,而縱坐標(biāo)等于OA的長,進而得出B′的坐標(biāo).【詳解】解:y=-x+4中,令x=0得,y=4;令y=0得,-x+4=0,解得x=3,∴A(3,0),B(0,4).

由旋轉(zhuǎn)可得△AOB≌△AO′B′,∠O′AO=90°,

∴∠B′O′A=90°,OA=O′A,OB=O′B′,∴O′B′∥x軸,

∴點B′的縱坐標(biāo)為OA長,即為3;橫坐標(biāo)為OA+O′B′=OA+OB=3+4=1.

故點B′的坐標(biāo)是(1,3),

故答案為:(1,3).【點睛】本題主要考查了旋轉(zhuǎn)的性質(zhì)以及一次函數(shù)與坐標(biāo)軸的交點問題,利用基本性質(zhì)結(jié)合圖形進行推理是解題的關(guān)鍵.15、1【分析】利用正六邊形的概念以及正六邊形外接圓的性質(zhì)進而計算.【詳解】邊長為1的正六邊形可以分成六個邊長為1的正三角形,∴外接圓半徑是1,故答案為:1.【點睛】本題考查了正六邊形的概念以及正六邊形外接圓的性質(zhì),掌握正六邊形的外接圓的半徑等于其邊長是解題的關(guān)鍵.16、【解析】∵拋擲一枚質(zhì)地均勻的硬幣,有兩種結(jié)果:正面朝上,反面朝上,每種結(jié)果等可能出現(xiàn),∴他第二次再拋這枚硬幣時,正面向上的概率是:17、【分析】根據(jù)y1=,過y1上的任意一點A,得出△CAO的面積為2,進而得出△CBO面積為3,即可得出y2的解析式.【詳解】解:∵y1=,過y1上的任意一點A,作x軸的平行線交y2于B,交y軸于C,∴S△AOC=×4=2,∵S△AOB=1,∴△CBO面積為3,∴k=xy=6,∴y2的解析式是:y2=.故答案為y2=.18、64【分析】先根據(jù)圓周角定理求出∠O的度數(shù),然后根據(jù)平行四邊形的對角相等求解即可.【詳解】∵,∴∠O=2,∵四邊形是平行四邊形,∴∠O=.故答案為:64.【點睛】本題考查了圓周角定理,平行四變形的性質(zhì),熟練掌握圓周角定理是解答本題的關(guān)鍵.在同圓或等圓中,同弧或等弧所對的圓周角等于這條弧所對的圓心角的一半.三、解答題(共66分)19、(1);(2)答案見解析,.【分析】(1)拋物線的對稱軸在BC的中垂線上,則點D、A關(guān)于函數(shù)對稱軸對稱,即可求解;(2)AC中垂線的表達式為:y=x,BC的中垂線為:x=,則圓心E為:(,).【詳解】解:(1)拋物線的對稱軸在BC的中垂線上,則點D、A關(guān)于函數(shù)對稱軸對稱,

故點D(3,2),

故答案為:(3,2);(2)AB中垂線的表達式為:y=x,BC的中垂線為:x=,則圓心E為:(,).作圖如下:【點睛】本題考查的是二次函數(shù)綜合運用,圓的基本性質(zhì),創(chuàng)新作圖,求出圓心的坐標(biāo)是解題的關(guān)鍵.20、(1)y=﹣x2+2x;(2)2m【分析】(1)利用待定系數(shù)法求解可得;

(3)在所求函數(shù)解析式中求出y=1時x的值即可得.【詳解】解:(1)設(shè)拋物線的解析式為y=ax2+bx+c,將點O(0,0)、A(4,0)、P(3,)代入,得:解得:,所以拋物線的解析式為y=﹣x2+2x;(2)當(dāng)y=1時,﹣x2+2x=1,即x2﹣4x+2=0,解得:x=2,則水面的寬為2+﹣(2﹣)=2(m).答:水面寬是:2m.【點睛】考查二次函數(shù)的應(yīng)用,掌握待定系數(shù)法求二次函數(shù)解析式是解題的關(guān)鍵.21、(1)y=﹣+2,y=﹣;(2)﹣2<x<4【分析】(1)根據(jù)待定系數(shù)法即可求得一次函數(shù)的解析式,由題意可知C的縱坐標(biāo)為1,代入一次函數(shù)解析式即可求得C的坐標(biāo),然后代入y=求得m的值,即可求得反比例函數(shù)的解析式;(2)根據(jù)圖象找出y=kx+b在x軸上方且在y=的下方的圖象對應(yīng)的x的范圍.【詳解】(1)根據(jù)題意,得,解得k=﹣,b=2,所以一次函數(shù)的解析式為y=﹣+2,由題意可知,點C的縱坐標(biāo)為1.把y=1代入y=﹣+2,中,得x=﹣2.所以點C坐標(biāo)為(﹣2,1).把點C坐標(biāo)(﹣2,1)代入y=中,解得m=﹣3.所以反比例函數(shù)的解析式為y=﹣;(2)根據(jù)圖像可得:不等式4<kx+b<的解集是:﹣2<x<4.【點睛】本題考查了反比例函數(shù)與一次函數(shù)的交點問題:求反比例函數(shù)與一次函數(shù)的交點坐標(biāo),把兩個函數(shù)關(guān)系式聯(lián)立成方程組求解,若方程組有解則兩者有交點,方程組無解,則兩者無交點.也考查了觀察函數(shù)圖象的能力.22、.【分析】把方程中的x-2看作一個整體,利用因式分解法解此方程.【詳解】解:(x-2)(x+2)=2,∴x-2=2或x+2=2,∴x2=2,x2=-2.23、(1)48mm;(2)①;②x=40,S的最大值是2400.【分析】(1)首先得出,進而利用相似三角形的性質(zhì)求出即可;(2)利用正方形的判定方法得出鄰邊關(guān)系進而得出答案;(3)由根據(jù)二次函數(shù)的最值即可求.【詳解】解:(1),,,設(shè)正方形的邊長為答:這個正方形的邊長是.(2)①在矩形中,設(shè),,由(1)可得:得②由題意得,∴∴時,的最大值是2400.【點睛】此題主要考查了相似三角形的判定與性質(zhì)以及正方形的判定、二次函數(shù)的應(yīng)用,得出是解題關(guān)鍵.24、用一根長12的鐵絲能圍成面積是7的矩形,理由見解析【分析】設(shè)這根鐵絲圍成的矩形的一邊長為,然后根據(jù)矩形的面積公式列出方程,并解方程即可.【詳解】解:設(shè)這根鐵絲圍成的矩形的一邊長為.根據(jù)題意,得解這個方程,得,當(dāng)時,;當(dāng)時,答:用一根長12鐵絲能圍成面積是7的矩形.【點睛】此題考查的是一元二次方程的應(yīng)用,掌握利用矩形的面積公式列方程是解決此題的關(guān)鍵.25、(1),點A的坐標(biāo)為(-2,0),點B的坐標(biāo)為(8,0);(2)當(dāng)=4時,△PBC的面積最大,最大面積是1.【分析】(1)由拋物線的對稱軸是直線x=3,解出a的值,即可求得拋物線解析式,在令其y值為0,解一元二次方程即可求出A和B的坐標(biāo);

(2)易求點C的坐標(biāo)為(0,4),設(shè)直線BC的解析式為y=kx+b(k≠0),將B(8,0),C(0,4)代入y=kx+b,解出k和b的值,即得直線BC的解析式;設(shè)點P的坐標(biāo)為(,),過點P作PD∥y軸,交直線BC于點D,則點D的坐標(biāo)為(,),利用面積公式得出關(guān)于x的二次函數(shù),從而求得其最值.

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論