2026屆上海市東昌中學(xué)高二上數(shù)學(xué)期末質(zhì)量跟蹤監(jiān)視試題含解析_第1頁(yè)
2026屆上海市東昌中學(xué)高二上數(shù)學(xué)期末質(zhì)量跟蹤監(jiān)視試題含解析_第2頁(yè)
2026屆上海市東昌中學(xué)高二上數(shù)學(xué)期末質(zhì)量跟蹤監(jiān)視試題含解析_第3頁(yè)
2026屆上海市東昌中學(xué)高二上數(shù)學(xué)期末質(zhì)量跟蹤監(jiān)視試題含解析_第4頁(yè)
2026屆上海市東昌中學(xué)高二上數(shù)學(xué)期末質(zhì)量跟蹤監(jiān)視試題含解析_第5頁(yè)
已閱讀5頁(yè),還剩11頁(yè)未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

2026屆上海市東昌中學(xué)高二上數(shù)學(xué)期末質(zhì)量跟蹤監(jiān)視試題注意事項(xiàng)1.考試結(jié)束后,請(qǐng)將本試卷和答題卡一并交回.2.答題前,請(qǐng)務(wù)必將自己的姓名、準(zhǔn)考證號(hào)用0.5毫米黑色墨水的簽字筆填寫(xiě)在試卷及答題卡的規(guī)定位置.3.請(qǐng)認(rèn)真核對(duì)監(jiān)考員在答題卡上所粘貼的條形碼上的姓名、準(zhǔn)考證號(hào)與本人是否相符.4.作答選擇題,必須用2B鉛筆將答題卡上對(duì)應(yīng)選項(xiàng)的方框涂滿、涂黑;如需改動(dòng),請(qǐng)用橡皮擦干凈后,再選涂其他答案.作答非選擇題,必須用05毫米黑色墨水的簽字筆在答題卡上的指定位置作答,在其他位置作答一律無(wú)效.5.如需作圖,須用2B鉛筆繪、寫(xiě)清楚,線條、符號(hào)等須加黑、加粗.一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.如圖,在平行六面體中,()A. B.C. D.2.設(shè)數(shù)列的前項(xiàng)和為,若,,,則、、、中,最大的是()A. B.C. D.3.宋元時(shí)期數(shù)學(xué)名著《算學(xué)啟蒙》中有關(guān)于“松竹并生"的問(wèn)題,松長(zhǎng)三尺,竹長(zhǎng)一尺,松日自半,竹日自倍,松竹何日而長(zhǎng)等,如圖是源于其思想的一個(gè)程序框圖,若輸入的,分別為3,1,則輸出的等于A.5 B.4C.3 D.24.在條件下,目標(biāo)函數(shù)的最大值為2,則的最小值是()A.20 B.40C.60 D.805.已知,,若,則實(shí)數(shù)的值為()A. B.C. D.6.已知,為橢圓的左、右焦點(diǎn),P為橢圓上一點(diǎn),若,則P點(diǎn)的橫坐標(biāo)為()A. B.C.4 D.97.已知向量,,且,則值是()A. B.C. D.8.如圖,A,B,C三點(diǎn)不共線,O為平面ABC外一點(diǎn),且平面ABC中的小方格均為單位正方形,,,則()A.1 B.C.2 D.9.已知,那么函數(shù)在x=π處的瞬時(shí)變化率為()A. B.0C. D.10.已知直線的斜率為1,直線的傾斜角比直線的傾斜角小15°,則直線的斜率為()A.-1 B.C. D.111.在空間直角坐標(biāo)系中,為直線的一個(gè)方向向量,為平面的一個(gè)法向量,且,則()A. B.C. D.12.函數(shù)的圖象在點(diǎn)處的切線的傾斜角為()A. B.0C. D.1二、填空題:本題共4小題,每小題5分,共20分。13.中國(guó)三大名樓之一的黃鶴樓因其獨(dú)特的建筑結(jié)構(gòu)而聞名,其外觀有五層而實(shí)際上內(nèi)部有九層,隱喻“九五至尊”之意,為迎接2022年春節(jié)的到來(lái),有網(wǎng)友建議在黃鶴樓內(nèi)部掛燈籠進(jìn)行裝飾,若在黃鶴樓內(nèi)部九層塔樓共掛1533盞燈籠,且相鄰的兩層中,下一層的燈籠數(shù)是上一層燈籠數(shù)的兩倍,則內(nèi)部塔樓的頂層應(yīng)掛______盞燈籠14.過(guò)點(diǎn)且與直線垂直的直線方程為_(kāi)_____15.甲乙兩艘輪船都要在某個(gè)泊位停靠8個(gè)小時(shí),假定它們?cè)谝粫円沟臅r(shí)間段內(nèi)隨機(jī)地到達(dá),則兩船中有一艘在??坎次粫r(shí)、另一艘船必須等待的概率為_(kāi)_____.16.已知平面的法向量分別為,,若,則的值為_(kāi)__三、解答題:共70分。解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟。17.(12分)已知橢圓,直線.(1)若直線與橢圓相切,求實(shí)數(shù)的值;(2)若直線與橢圓相交于A、兩點(diǎn),為線段的中點(diǎn),為坐標(biāo)原點(diǎn),且,求實(shí)數(shù)的值.18.(12分)已知公差不為的等差數(shù)列的首項(xiàng),且、、成等比數(shù)列.(1)求數(shù)列的通項(xiàng)公式;(2)設(shè),,是數(shù)列的前項(xiàng)和,求使成立的最大的正整數(shù).19.(12分)已知圓的圓心為,且圓經(jīng)過(guò)點(diǎn)(1)求圓的標(biāo)準(zhǔn)方程;(2)若圓:與圓恰有兩條公切線,求實(shí)數(shù)取值范圍20.(12分)如圖,四棱錐P-ABCD中,底面ABCD為矩形,PA⊥平面ABCD,E為PD的中點(diǎn).(1)證明:PB∥平面AEC(2)設(shè)二面角D-AE-C為60°,AP=1,AD=,求三棱錐E-ACD的體積21.(12分)已知函數(shù)(1)求函數(shù)的單調(diào)遞減區(qū)間;(2)在中,角,,所對(duì)的邊分別為,,,且滿足,,求面積的最大值22.(10分)如圖,在三棱錐中,,,記二面角的平面角為(1)若,,求三棱錐的體積;(2)若M為BC的中點(diǎn),求直線AD與EM所成角的取值范圍

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、B【解析】由空間向量的加法的平行四邊形法則和三角形法則,可得所求向量【詳解】連接,可得,又,所以故選:B.2、C【解析】求出的表達(dá)式,解不等式可得結(jié)果.【詳解】由已知可得,故數(shù)列為等差數(shù)列,且公差為,所以,,令可得.因此,當(dāng)時(shí),最大.故選:C.3、B【解析】由已知中的程序框圖可知:該程序的功能是利用循環(huán)結(jié)構(gòu)計(jì)算并輸出變量S的值,模擬程序的運(yùn)行過(guò)程,分析循環(huán)中各變量值的變化情況,可得答案【詳解】解:當(dāng)n=1時(shí),a=3,b=2,滿足進(jìn)行循環(huán)的條件,當(dāng)n=2時(shí),a,b=4,滿足進(jìn)行循環(huán)的條件,當(dāng)n=3時(shí),a,b=8,滿足進(jìn)行循環(huán)的條件,當(dāng)n=4時(shí),a,b=16,不滿足進(jìn)行循環(huán)的條件,故輸出的n值為4,故選:B【點(diǎn)睛】本題考查的知識(shí)點(diǎn)是程序框圖,當(dāng)循環(huán)的次數(shù)不多,或有規(guī)律時(shí),常采用模擬循環(huán)的方法解答4、C【解析】首先畫(huà)出可行域,找到最優(yōu)解,得到關(guān)系式作為條件,再去求的最小值.【詳解】畫(huà)出的可行域,如下圖:由得由得;由得;目標(biāo)函數(shù)取最大值時(shí)必過(guò)N點(diǎn),則則(當(dāng)且僅當(dāng)時(shí)等號(hào)成立)故選:C5、A【解析】由,得,從而可得答案.【詳解】解:因?yàn)?,所以,即,解?故選:A.6、B【解析】設(shè),,根據(jù)向量的數(shù)量積得到,與橢圓方程聯(lián)立,即可得到答案;【詳解】設(shè),,,與橢圓聯(lián)立,解得:,故選:B7、A【解析】求出向量,的坐標(biāo),利用向量數(shù)量積坐標(biāo)表示即可求解.【詳解】因?yàn)橄蛄?,,所以,,因?yàn)?,所以,解得:,故選:A.8、B【解析】根據(jù)向量的線性運(yùn)算,將向量表示為,再根據(jù)向量的數(shù)量積的運(yùn)算進(jìn)行計(jì)算可得答案,【詳解】因?yàn)?,所?,故選:B.9、A【解析】利用導(dǎo)數(shù)運(yùn)算法則求出,根據(jù)導(dǎo)數(shù)的定義即可得到結(jié)論【詳解】由題設(shè),,所以,函數(shù)在x=π處瞬時(shí)變化率為,故選:A10、C【解析】根據(jù)直線的斜率求出其傾斜角可求得答案.【詳解】設(shè)直線的傾斜角為,所以,因?yàn)?,所以,因?yàn)橹本€的傾斜角比直線的傾斜角小15°,所以直線的傾斜角為,則直線的斜率為.故選:C11、B【解析】由已知條件得出,結(jié)合空間向量數(shù)量積的坐標(biāo)運(yùn)算可求得實(shí)數(shù)的值.【詳解】因?yàn)?,則,解得.故選:B.12、A【解析】求出導(dǎo)函數(shù),計(jì)算得切線斜率,由斜率求得傾斜角【詳解】,設(shè)傾斜角為,則,,故選:A二、填空題:本題共4小題,每小題5分,共20分。13、【解析】根據(jù)給定條件,各層燈籠數(shù)從上到下排成一列構(gòu)成等比數(shù)列,利用等比數(shù)列前n項(xiàng)和公式計(jì)算作答.【詳解】依題意,各層燈籠數(shù)從上到下排成一列構(gòu)成等比數(shù)列,公比,前9項(xiàng)和為1533,于是得,解得,所以內(nèi)部塔樓的頂層應(yīng)掛3盞燈籠.故答案為:314、【解析】先設(shè)出與直線垂直的直線方程,再把代入進(jìn)行求解.【詳解】設(shè)與直線垂直的直線為,將代入得:,解得:,故所求直線方程為.故答案為:15、【解析】利用幾何概型的面積型概率計(jì)算,作出邊長(zhǎng)為24的正方形面積,求出部分的面積,即可求得答案.【詳解】設(shè)甲乙兩艘輪船到達(dá)的時(shí)間分為,則,記事件為兩船中有一艘在停靠泊位時(shí)、另一艘船必須等待,則,即∴.故答案為:.【點(diǎn)睛】本題考查幾何概型,考查轉(zhuǎn)化與化歸思想、數(shù)形結(jié)合思想,考查邏輯推理能力和運(yùn)算求解能力,求解時(shí)注意對(duì)概率模型的抽象成面積型.16、【解析】由平面互相垂直可知其對(duì)應(yīng)的法向量也垂直,然后用空間向量垂直的坐標(biāo)運(yùn)算求解即可.【詳解】∵,∴平面的法向量互相垂直,∴,即,解得,故答案為:.三、解答題:共70分。解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟。17、(1)(2)m值為或.【解析】(1)利用判別式直接求解;(2)用“設(shè)而不求法”表示出,即可求出m.【小問(wèn)1詳解】聯(lián)立,消去y可得.因?yàn)橹本€與橢圓相切,所以,解得:.【小問(wèn)2詳解】設(shè).聯(lián)立,消去y可得.所以,,所以.又由,可得.所以.因?yàn)?所以,解得,所以實(shí)數(shù)m的值為或.18、(1)(2)【解析】(1)設(shè)等差數(shù)列的公差為,根據(jù)已知條件可得出關(guān)于實(shí)數(shù)的等式,結(jié)合可求得的值,由此可得出數(shù)列的通項(xiàng)公式;(2)利用裂項(xiàng)求和法求出,解不等式即可得出結(jié)果.【小問(wèn)1詳解】解:設(shè)等差數(shù)列公差為,則,由題意可得,即,整理得,,解得,故.【小問(wèn)2詳解】解:,所以,,由得,可得,所以,滿足成立的最大的正整數(shù)的值為.19、(1);(2).【解析】(1)根據(jù)給定條件求出圓C的半徑,再直接寫(xiě)出方程作答.(2)由給定條件可得圓C與圓O相交,由此列出不等式求解作答.【小問(wèn)1詳解】依題意,圓C的半徑,所以圓的標(biāo)準(zhǔn)方程是:.【小問(wèn)2詳解】圓:圓心,半徑為,因圓與圓恰有兩條公切線,則有圓O與圓C相交,即,而,因此有,解得,所以實(shí)數(shù)的取值范圍是.20、【解析】(Ⅰ)連接BD交AC于O點(diǎn),連接EO,只要證明EO∥PB,即可證明PB∥平面AEC;(Ⅱ)延長(zhǎng)AE至M連結(jié)DM,使得AM⊥DM,說(shuō)明∠CMD=60°,是二面角的平面角,求出CD,即可三棱錐E-ACD的體積試題解析:(1)證明:連接BD交AC于點(diǎn)O,連接EO.因?yàn)锳BCD為矩形,所以O(shè)為BD中點(diǎn)又E為PD的中點(diǎn),所以EO∥PB.因?yàn)镋O?平面AEC,PB?平面AEC,所以PB∥平面AEC.(2)因?yàn)镻A⊥平面ABCD,ABCD為矩形,所以AB,AD,AP兩兩垂直如圖,以A為坐標(biāo)原點(diǎn),,AD,AP的方向?yàn)閤軸y軸z軸的正方向,||為單位長(zhǎng),建立空間直角坐標(biāo)系A(chǔ)-xyz,則D,E,=.設(shè)B(m,0,0)(m>0),則C(m,,0),=(m,,0)設(shè)n1=(x,y,z)為平面ACE的法向量,則即可取n1=.又n2=(1,0,0)為平面DAE的法向量,由題設(shè)易知|cos〈n1,n2〉|=,即=,解得m=.因?yàn)镋為PD的中點(diǎn),所以三棱錐E-ACD的高為.三棱錐E-ACD的體積V=××××=.考點(diǎn):二面角的平面角及求法;棱柱、棱錐、棱臺(tái)的體積;直線與平面平行的判定21、(1)(2)【解析】(1)由三角恒等變換公式化簡(jiǎn),根據(jù)三角函數(shù)性質(zhì)求解(2)由余弦定理與面積公式,結(jié)合基本不等式求解【小問(wèn)1詳解】由己知可得,由,解得:,故的單調(diào)遞減區(qū)間是【小問(wèn)2詳解】,,故,得,由余弦定理得:,得,當(dāng)且僅當(dāng)時(shí)等號(hào)成立,故,面積最大值為22、(1)(2)【解析】(1)作出輔助線,找到二面角的平面角,利用余弦定理求出,求出底面積和高,進(jìn)而求出三棱錐的體積;(2)利用空間基底表達(dá)出,結(jié)合第一問(wèn)結(jié)論求出,從而求出答案.【小問(wèn)1詳解】取AC的中點(diǎn)F,連接FD,F(xiàn)E,由BC=2,則,故DF⊥AC,EF⊥AC,故∠DFE即為二面角的平面角,即,連接DE,作DH⊥FE,因?yàn)椋云矫鍰EF,因?yàn)镈H平面DEF,所以AC⊥DH,因?yàn)?,所以DH⊥平面ABC,因?yàn)?,由勾股定理得:,,又,由勾股定理逆定理可?/p>

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

最新文檔

評(píng)論

0/150

提交評(píng)論