版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
2026屆四川大學附屬中學高二數學第一學期期末考試模擬試題注意事項1.考生要認真填寫考場號和座位序號。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.德國數學家萊布尼茨是微積分的創(chuàng)立者之一,他從幾何問題出發(fā),引進微積分概念.在研究切線時認識到,求曲線的切線的斜率依賴于縱坐標的差值和橫坐標的差值,以及當此差值變成無限小時它們的比值,這也正是導數的幾何意義.設是函數的導函數,若,且對,,且總有,則下列選項正確的是()A. B.C. D.2.數學美的表現(xiàn)形式不同于自然美或藝術美那樣直觀,它蘊藏于特有的抽象概念,公式符號,推理論證,思維方法等之中,揭示了規(guī)律性,是一種科學的真實美.平面直角坐標系中,曲線:就是一條形狀優(yōu)美的曲線,對于此曲線,給出如下結論:①曲線圍成的圖形的面積是;②曲線上的任意兩點間的距離不超過;③若是曲線上任意一點,則的最小值是其中正確結論的個數為()A. B.C. D.3.已知平面的一個法向量為=(2,-2,4),=(-1,1,-2),則AB所在直線l與平面的位置關系為()A.l⊥ B.C.l與相交但不垂直 D.l∥4.過兩點和的直線的斜率為()A. B.C. D.5.已知向量,且,則()A. B.C. D.6.數列1,,,的一個通項公式可以是()A. B.C. D.7.橢圓的兩焦點之間的距離為A. B.C. D.8.已知雙曲線的漸近線方程為,則該雙曲線的離心率等于()A. B.C.2 D.49.在空間四邊形中,,,,且,則()A. B.C. D.10.已知點是拋物線的焦點,點為拋物線上的任意一點,為平面上點,則的最小值為A.3 B.2C.4 D.11.已知隨機變量服從正態(tài)分布,且,則()A.0.1 B.0.2C.0.3 D.0.412.函數的單調遞減區(qū)間是()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.已知、分別為雙曲線的左、右焦點,為雙曲線右支上一點,滿足,直線與圓有公共點,則雙曲線的離心率的取值范圍是___________.14.甲乙參加摸球游戲,袋子中裝有3個黑球和1個白球,球的大小、形狀、質量等均一樣,若從袋中有放回地取1個球,再取1個球,若取出的兩個球同色,則甲勝,若取出的兩個球不同色則乙勝,求乙獲勝的概率為_____15.函數的單調遞減區(qū)間是___________.16.在中,,是線段上的點,,若的面積為,當取到最大值時,___________.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)已知橢圓的離心率為,短軸端點到焦點的距離為2(1)求橢圓的方程;(2)設為橢圓上任意兩點,為坐標原點,且以為直徑的圓經過原點,求證:原點到直線的距離為定值,并求出該定值18.(12分)已知函數.(1)求函數f(x)的單調區(qū)間;(2)若f(x)≥0對定義域內的任意x恒成立,求實數a的取值范圍.19.(12分)在下面兩個條件中任選一個條件,補充在后面問題中的橫線上,并完成解答.條件①:展開式前三項的二項式系數的和等于37;條件②:第3項與第7項的二項式系數相等;問題:在二項式的展開式中,已知__________.(1)求展開式中二項式系數最大的項;(2)設,求的值;(3)求的展開式中的系數.20.(12分)已知橢圓的左、右焦點分別為,過右焦點作直線交于,其中的周長為的離心率為.(1)求的方程;(2)已知的重心為,設和的面積比為,求實數的取值范圍.21.(12分)已知函數(1)若函數的圖象在點處的切線與平行,求b的值;(2)在(1)的條件下證明:22.(10分)已知函數.(1)當時,解不等式;(2)若不等式的解集為,求實數的取值范圍.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、D【解析】由,得在上單調遞增,并且由的圖象是向上凸,進而判斷選項.【詳解】由,得在上單調遞增,因為,所以,故A不正確;對,,且,總有,可得函數的圖象是向上凸,可用如圖的圖象來表示,由表示函數圖象上各點處的切線的斜率,由函數圖象可知,隨著的增大,的圖象越來越平緩,即切線的斜率越來越小,所以,故B不正確;,表示點與點連線的斜率,由圖可知,所以D正確,C不正確.故選:D.【點睛】本題考查以數學文化為背景,導數的幾何意義,根據函數的單調性比較函數值的大小,屬于中檔題型.2、C【解析】結合已知條件寫出曲線的解析式,進而作出圖像,對于①,通過圖像可知,所求面積為四個半圓和一個正方形面積之和,結合數據求解即可;對于②,根據圖像求出曲線上的任意兩點間的距離的最大值即可判斷;對于③,將問題轉化為點到直線的距離,然后利用圓上一點到直線的距離的最小值為圓心到直線的距離減去半徑即可求解.【詳解】當且時,曲線的方程可化為:;當且時,曲線的方程可化為:;當且時,曲線的方程可化為:;當且時,曲線的方程可化為:,曲線的圖像如下圖所示:由上圖可知,曲線所圍成的面積為四個半圓的面積與邊長為的正方形的面積之和,從而曲線所圍成的面積,故①正確;由曲線的圖像可知,曲線上的任意兩點間的距離的最大值為兩個半徑與正方形的邊長之和,即,故②錯誤;因為到直線的距離為,所以,當最小時,易知在曲線的第一象限內的圖像上,因為曲線的第一象限內的圖像是圓心為,半徑為的半圓,所以圓心到的距離,從而,即,故③正確,故選:C.3、A【解析】由向量與平面法向量的關系判斷直線與平面的位置關系【詳解】因為,所以,所以故選:A4、D【解析】應用兩點式求直線斜率即可.【詳解】由已知坐標,直線的斜率為.故選:D5、A【解析】利用空間向量共線的坐標表示即可求解.【詳解】由題意可得,解得,所以.故選:A6、A【解析】根據各項的分子和分母特征進行求解判斷即可.【詳解】因為,所以該數列的一個通項公式可以是;對于選項B:,所以本選項不符合要求;對于選項C:,所以本選項不符合要求;對于選項D:,所以本選項不符合要求,故選:A7、C【解析】根據題意,由于橢圓的方程為,故可知長半軸的長為,那么可知兩個焦點的坐標為,因此可知兩焦點之間的距離為,故選C考點:橢圓的簡單幾何性質點評:解決的關鍵是將方程變?yōu)闃藴适?,然后結合性質得到結論,屬于基礎題8、A【解析】由雙曲線的漸近線方程,可得,再由的關系和離心率公式,計算即可得到所求值【詳解】解:雙曲線的漸近線方程為,由題意可得即,可得由可得,故選:A.9、A【解析】利用空間向量的線性運算即可求解.【詳解】..故選:A.10、A【解析】作垂直準線于點,根據拋物線的定義,得到,當三點共線時,的值最小,進而可得出結果.【詳解】如圖,作垂直準線于點,由題意可得,顯然,當三點共線時,的值最小;因為,,準線,所以當三點共線時,,所以.故選A【點睛】本題主要考查拋物線上任一點到兩定點距離的和的最值問題,熟記拋物線的定義與性質即可,屬于??碱}型.11、A【解析】利用正態(tài)分布的對稱性和概率的性質即可【詳解】由,且則有:根據正態(tài)分布的對稱性可知:故選:A12、D【解析】求導后,利用求得函數的單調遞減區(qū)間.【詳解】解:,則,由得,故選:D.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】過點作于,過點作于,利用雙曲線的定義以及勾股定理可求得,由已知可得,可得出關于、的齊次不等式,結合可求得的取值范圍.【詳解】過點作于,過點作于,因為,所以,又因為,所以,故,又因為,且,所以,因此,所以,又因為直線與圓有公共點,所以,故,即,則,所以,又因為雙曲線的離心率,所以.故答案為:.14、##0.375【解析】先算出有放回地取兩次的取法數,再算出取出兩球不同色的取法數,根據古典概型的概率公式計算即可求得答案.【詳解】有放回地取兩球,共有種取法,兩次取球不同色的取法有種,故乙獲勝的概率為,故答案為:15、【解析】首先對求導,可得,令,解可得答案【詳解】解:由得,故的單調遞減區(qū)間是故答案為:【點睛】本題考查利用導數研究函數的單調性,屬于基礎題.16、【解析】由三角形面積公式得出,設,由可得出,利用基本不等式可求出的值,利用等號成立可得出、的值,再利用余弦利用可得出的值.【詳解】由題意可得,解得,設,則,可得,由基本不等式可得,當且僅當時,取得最大值,,,由余弦定理得,解得.故答案為【點睛】本題考查余弦定理解三角形,同時也考查了三角形的面積公式以及利用基本不等式求最值,在利用基本不等式求最值時,需要結合已知條件得出定值條件,同時要注意等號成立的條件,考查分析問題和解決問題的能力,屬于中等題.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1)(2)證明見解析,定值為【解析】(1)根據題意得到,,得到橢圓方程.(2)考慮直線斜率存在和不存在兩種情況,聯(lián)立方程,根據韋達定理得到根與系數的關系,將題目轉化為,化簡得到,代入計算得到答案.【小問1詳解】橢圓的離心率為,短軸端點到焦點的距離為,故,,故橢圓方程為.【小問2詳解】當直線斜率存在時,設直線方程為,,,則,即,,以為直徑的圓經過原點,故,即,即,化簡整理得到:,原點到直線的距離為.當直線斜率不存在時,為等腰直角三角形,設,則,解得,即直線方程為,到原點的距離為.綜上所述:原點到直線的距離為定值.【點睛】本題考查了橢圓方程,橢圓中的定值問題,意在考查學生的計算能力,轉化能力和綜合應用能力,其中將圓過原點轉化為是解題的關鍵.18、(1)答案見解析(2)【解析】(1)求導數,然后對進行分類討論,利用導數的正負,可得函數的單調區(qū)間;(2)利用(1)中函數的單調性,求得函數在處取得最小值,即可求實數的取值范圍.【小問1詳解】解:求導可得①時,令可得,由于知;令,得∴函數在上單調遞減,在上單調遞增;②時,令可得;令,得或,由于知或;∴函數在上單調遞減,在上單調遞增;③時,,函數在上單調遞增;④時,令可得;令,得或,由于知或∴函數在上單調遞減,在上單調遞增;【小問2詳解】由(1)時,,(不符合,舍去)當時,在上單調遞減,在上單調遞增,故函數在處取得最小值,所以函數對定義域內的任意x恒成立時,只需要即可∴.綜上,.19、(1)答案見解析(2)0(3)560【解析】(1)選擇①,由,得,選擇②,由,得;(2)利用賦值法可求解;(3)分兩個部分求解后再求和即可.【小問1詳解】選擇①,因為,解得,所以展開式中二項式系數最大的項為選擇②,因為,解得,所以展開式中二項式系數最大的項為【小問2詳解】令,則,令,則,所以,【小問3詳解】因為所以的展開式中含的項為:所以展開式中的系數為560.20、(1)(2)【解析】(1)已知焦點弦三角形的周長,以及離心率求橢圓方程,待定系數直接求解即可.(2)第一步設點設直線,第二步聯(lián)立方程韋達定理,第三步條件轉化,利用三角形等面積法,列方程,第四步利用韋達定理進行轉化,計算即可.【小問1詳解】因為的周長為,的離心率為,所以,,所以,,又,所以橢圓的方程為.【小問2詳解】方法一:,,的面積為,的面積為,則,得,①設,與橢圓C方程聯(lián)立,消去得,由韋達定理得,.令,②則,可得當時,當時,所以,又解得③由①②③得,解得.所以實數的取值范圍是.方法二:同方法一可得的面積為,的面積為,則,得,①設,與橢圓C方程聯(lián)立,消去得,由韋達定理得,.所以因為,所以解得②由①②解得.所以實數的取值范圍是.21、(1);(2)證明見解析.【解析】(1)由題意可得,從而可求出,(2)先構造函數,利用導數可求得對任意恒成立,對任意恒成立,從而將問題轉化為只需證對任意恒成立,再次構造函數,利用導數求出其最大值小于等于即可【詳解】(1)解:∵函數的圖象在點處的切線與平行,∴,解得;證明:(2)由(1)得即對任意
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 重慶市潼南區(qū)202-2026學年九年級上學期期末語文試題(含答案)(含解析)
- 2026福建福州市水路運輸應急保障中心編外人員招聘1人備考題庫及答案詳解1套
- 2026浙江紹興市產融科技服務有限公司項目制人員招聘2人備考題庫及完整答案詳解一套
- 畜禽幼崽保育與飼養(yǎng)技術手冊
- 2026西北工業(yè)大學計算機學院計算與藝術交叉研究中心非事業(yè)編制人員招聘1人備考題庫(陜西)附答案詳解
- 2026海南??谑旋埲A區(qū)公費師范生招聘2人備考題庫參考答案詳解
- 2026年影視后期剪輯特效制作課程
- 2026年1月浙江省高考(首考)化學試題(含標準答案及解析)
- 超重失重課件
- 職業(yè)噪聲暴露的健康管理路徑
- 四川省遂寧市2026屆高三上學期一診考試英語試卷(含答案無聽力音頻有聽力原文)
- 福建省寧德市2025-2026學年高三上學期期末考試語文試題(含答案)
- 建筑施工行業(yè)2026年春節(jié)節(jié)前全員安全教育培訓
- 食品生產余料管理制度
- 2026年浦發(fā)銀行社會招聘備考題庫必考題
- 2026屆高考語文復習:小說人物形象復習
- 2026年山東省煙草專賣局(公司)高校畢業(yè)生招聘流程筆試備考試題及答案解析
- 專題23 廣東省深圳市高三一模語文試題(學生版)
- 2026年時事政治測試題庫100道含完整答案(必刷)
- 八年級下冊《昆蟲記》核心閱讀思考題(附答案解析)
- 2025年中職藝術設計(設計理論)試題及答案
評論
0/150
提交評論