2026屆云南省瀘水市第一中學(xué)數(shù)學(xué)高二上期末監(jiān)測模擬試題含解析_第1頁
2026屆云南省瀘水市第一中學(xué)數(shù)學(xué)高二上期末監(jiān)測模擬試題含解析_第2頁
2026屆云南省瀘水市第一中學(xué)數(shù)學(xué)高二上期末監(jiān)測模擬試題含解析_第3頁
2026屆云南省瀘水市第一中學(xué)數(shù)學(xué)高二上期末監(jiān)測模擬試題含解析_第4頁
2026屆云南省瀘水市第一中學(xué)數(shù)學(xué)高二上期末監(jiān)測模擬試題含解析_第5頁
已閱讀5頁,還剩11頁未讀, 繼續(xù)免費閱讀

付費下載

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)

文檔簡介

2026屆云南省瀘水市第一中學(xué)數(shù)學(xué)高二上期末監(jiān)測模擬試題注意事項1.考試結(jié)束后,請將本試卷和答題卡一并交回.2.答題前,請務(wù)必將自己的姓名、準(zhǔn)考證號用0.5毫米黑色墨水的簽字筆填寫在試卷及答題卡的規(guī)定位置.3.請認(rèn)真核對監(jiān)考員在答題卡上所粘貼的條形碼上的姓名、準(zhǔn)考證號與本人是否相符.4.作答選擇題,必須用2B鉛筆將答題卡上對應(yīng)選項的方框涂滿、涂黑;如需改動,請用橡皮擦干凈后,再選涂其他答案.作答非選擇題,必須用05毫米黑色墨水的簽字筆在答題卡上的指定位置作答,在其他位置作答一律無效.5.如需作圖,須用2B鉛筆繪、寫清楚,線條、符號等須加黑、加粗.一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.如圖,正方形與矩形所在的平面互相垂直,在上,且平面,則M點的坐標(biāo)為()A. B.C. D.2.設(shè)函數(shù),若為奇函數(shù),則曲線在點處的切線方程為()A. B.C. D.3.已知函數(shù),若在處取得極值,且恒成立,則實數(shù)的最大值為()A. B.C. D.4.已知,,且,則()A. B.C. D.5.函數(shù)在(0,e]上的最大值為()A.-1 B.1C.0 D.e6.如圖,在三棱錐中,兩兩垂直,且,點E為中點,若直線與所成的角為,則三棱錐的體積等于()A. B.C.2 D.7.從1,2,3,4,5中隨機抽取三個數(shù),則這三個數(shù)能成為一個三角形三邊長的概率為()A. B.C. D.8.已知數(shù)列滿足且,則()A.是等差數(shù)列 B.是等比數(shù)列C.是等比數(shù)列 D.是等比數(shù)列9.直線與圓的位置關(guān)系是()A.相切 B.相交C.相離 D.不確定10.設(shè)函數(shù)的導(dǎo)函數(shù)是,若,則()A. B.C. D.11.曲線與曲線()的()A.長軸長相等 B.短軸長相等C.離心率相等 D.焦距相等12.的二項展開式中,二項式系數(shù)最大的項是第()項.A.6 B.5C.4和6 D.5和7二、填空題:本題共4小題,每小題5分,共20分。13.?dāng)?shù)列滿足,,則______.14.已知函數(shù),是其導(dǎo)函數(shù),若曲線的一條切線為直線:,則的最小值為___________.15.已知P為拋物線上的一個動點,設(shè)P到拋物線準(zhǔn)線的距離為d,點,那么的最小值為______16.根據(jù)某市有關(guān)統(tǒng)計公報顯示,隨著“一帶一路”經(jīng)貿(mào)合作持續(xù)深化,該市對外貿(mào)易近幾年持續(xù)繁榮,2017年至2020年每年進(jìn)口總額x(單位:千億元)和出口總額y(單位:千億元)之間的一組數(shù)據(jù)如下:2017年2018年2019年2020年x1.82.22.63.0y2.02.83.24.0若每年的進(jìn)出口總額x,y滿足線性相關(guān)關(guān)系,則______;若計劃2022年出口總額達(dá)到5千億元,預(yù)計該年進(jìn)口總額為______千億元三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知橢圓,離心率為,短半軸長為1(1)求橢圓C的方程;(2)已知直線,問:在橢圓C上是否存在點T,使得點T到直線l的距離最大?若存在,請求出這個最大距離;若不存在,請說明理由18.(12分)設(shè)A,B為曲線C:y=上兩點,A與B的橫坐標(biāo)之和為4(1)求直線AB的斜率;(2)設(shè)M為曲線C上一點,C在M處的切線與直線AB平行,且AM⊥BM,求直線AB的方程19.(12分)如圖,已知圓C與y軸相切于點,且被x軸正半軸分成的兩段圓弧長之比為1∶2(1)求圓C的方程;(2)已知點,是否存在弦被點P平分?若存在,求直線的方程;若不存在,請說明理由20.(12分)如圖,在多面體ABCEF中,和均為等邊三角形,D是AC的中點,(1)證明:(2)若平面平面ACE,求二面角的余弦值.21.(12分)已知圓.(1)若不過原點的直線與圓相切,且直線在兩坐標(biāo)軸上的截距相等,求直線的方程;(2)求與圓和直線都相切的最小圓的方程.22.(10分)某城鎮(zhèn)為推進(jìn)生態(tài)城鎮(zhèn)建設(shè),對城鎮(zhèn)的生態(tài)環(huán)境、市容市貌等方面進(jìn)行了全面治理,為了解城鎮(zhèn)居民對治理情況的評價和建議,現(xiàn)隨機抽取了200名居民進(jìn)行問卷并評分(滿分100分),將評分結(jié)果制成如下頻率分布直方圖,已知圖中a,b,c成等比數(shù)列,且公比為2(1)求圖中a,b,c的值,并估計評分的均值(各段分?jǐn)?shù)用該段中點值作代表);(2)根據(jù)統(tǒng)計數(shù)據(jù),在評分為“50~60”和“80~90”的居民中用分層抽樣的方法抽取了6個居民.若從這6個居民中隨機選擇2個參加座談,求所抽取的2個居民中至少有1個評分在“80~90”的概率

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、A【解析】設(shè)點的坐標(biāo)為,由平面,可得出,利用空間向量數(shù)量積為0求得、的值,即可得出點的坐標(biāo).【詳解】設(shè)點的坐標(biāo)為,,,,,則,,,平面,即,所以,,解得,所以,點的坐標(biāo)為,故選:A.2、C【解析】利用函數(shù)的奇偶性求出,求出函數(shù)的導(dǎo)數(shù),根據(jù)導(dǎo)數(shù)的幾何意義,利用點斜式即可求出結(jié)果【詳解】函數(shù)的定義域為,若為奇函數(shù),則則,即,所以,所以函數(shù),可得;所以曲線在點處的切線的斜率為,則曲線在點處的切線方程為,即故選:C3、D【解析】根據(jù)已知在處取得極值,可得,將在恒成立,轉(zhuǎn)化為,只需求,求出最小值即可得答案【詳解】解:,,由在處取得極值,得,解得,所以,,其中,.當(dāng)時,,此時函數(shù)單調(diào)遞減,當(dāng)時,,此時函數(shù)單調(diào)遞增,故函數(shù)在處取得極小值,,恒成立,轉(zhuǎn)化為,令,,則,,令得,當(dāng)時,,此時函數(shù)單調(diào)遞減,當(dāng)時,,此時函數(shù)單調(diào)遞增,所以,即得,故選:D4、D【解析】利用空間向量共線的坐標(biāo)表示可求得、的值,即可得解.【詳解】因為,則,所以,,,因此,.故選:D5、A【解析】對函數(shù)求導(dǎo),然后求出函數(shù)的單調(diào)區(qū)間,從而可求出函數(shù)的最大值【詳解】由,得,當(dāng)時,,當(dāng),,所以在上單調(diào)遞增,在上單調(diào)遞減,所以當(dāng)時,取得最大值,故選:A6、D【解析】由題意可證平面,取BD的中點F,連接EF,則為直線與所成的角,利用余弦定理求出,根據(jù)三棱錐體積公式即可求得體積【詳解】如圖,∵,點為的中點,∴,,∵,,兩兩垂直,,∴平面,取BD的中點F,連接EF,∴為直線與所成的角,且,由題意可知,,設(shè),連接AF,則,在中,由余弦定理,得,即,解得,即∴三棱錐的體積故選:7、C【解析】列舉出所有情況,然后根據(jù)兩邊之和大于第三邊數(shù)出能構(gòu)成三角形的情況,進(jìn)而得到答案.【詳解】5個數(shù)取3個數(shù)的所有情況如下:{1,2,3;1,2,4;1,2,5;1,3,4;1,3,5;1,4,5;2,3,4;2,3,5;2,4,5;3,4,5}共10種情況,而能構(gòu)成三角形的情況有{2,3,4;2,4,5;3,4,5}共3種情況,故所求概率.故選:C.8、D【解析】由,化簡得,結(jié)合等比數(shù)列、等差數(shù)列的定義可求解.【詳解】由,可得,所以,又由,,所以是首項為,公比為2的等比數(shù)列,所以,,,,所以不是等差數(shù)列;不等于常數(shù),所以不是等比數(shù)列.故選:D.9、B【解析】直線恒過定點,而此點在圓的內(nèi)部,故可得直線與圓的位置關(guān)系.【詳解】直線恒過定點,而,故點在圓的內(nèi)部,故直線與圓的位置關(guān)系為相交,故選:B.10、A【解析】求導(dǎo)后,令,可求得,再令可求得結(jié)果.【詳解】因為,所以,所以,所以,所以,所以.故選:A【點睛】本題考查了導(dǎo)數(shù)的計算,考查了求導(dǎo)函數(shù)值,屬于基礎(chǔ)題.11、D【解析】分別求出兩橢圓的長軸長、短軸長、離心率、焦距,即可判斷.【詳解】曲線表示焦點在軸上,長軸長為,短軸長為,離心率為,焦距為;曲線表示焦點在軸上,長軸長為,短軸長為,離心率為,焦距為.對照選項可知:焦距相等.故選:D.12、A【解析】由二項展開的中間項或中間兩項二項式系數(shù)最大可得解.【詳解】因為二項式展開式一共11項,其中中間項的二項式系數(shù)最大,易知當(dāng)r=5時,最大,即二項展開式中,二項式系數(shù)最大的為第6項.故選:A二、填空題:本題共4小題,每小題5分,共20分。13、【解析】根據(jù)遞推關(guān)系依次求得的值.【詳解】依題意數(shù)列滿足,,所以.故答案為:14、【解析】設(shè)直線與曲線相切的切點為,借助導(dǎo)數(shù)的幾何意義用表示出m,n即可作答.【詳解】設(shè)直線與曲線相切的切點為,而,則直線的斜率,于是得,即,由得,而,于是得,即因,則,,當(dāng)且僅當(dāng)時取“=”,所以的最小值為.故答案為:【點睛】結(jié)論點睛:函數(shù)y=f(x)是區(qū)間D上的可導(dǎo)函數(shù),則曲線y=f(x)在點處的切線方程為:.15、5【解析】由拋物線的定義可得,所以,由圖可知當(dāng)三點共線時,取得最小值,從而可求得結(jié)果【詳解】拋物線的焦點,準(zhǔn)線為,如圖,過作垂直準(zhǔn)線于點,則,所以,由圖可知當(dāng)三點共線時,取得最小值,即最小值為,,所以的最小值為5,故答案為:516、①.1.6;②.3.65.【解析】根據(jù)給定數(shù)表求出樣本中心點,代入即可求得,取可求出該年進(jìn)口總額.【詳解】由數(shù)表得:,,因此,回歸直線過點,由,解得,此時,,當(dāng)時,即,解得,所以,預(yù)計該年進(jìn)口總額為千億元.故答案為:1.6;3.65三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1);(2)存在,最大距離為.,理由見解析【解析】(1)根據(jù)離心率及短軸長求橢圓參數(shù),即可得橢圓方程.(2)根據(jù)直線與橢圓的位置關(guān)系,將問題轉(zhuǎn)為平行于直線且與橢圓相切的切線與直線最大距離,設(shè)直線方程聯(lián)立橢圓方程根據(jù)求參數(shù),進(jìn)而判斷點T的存在性,即可求最大距離.【小問1詳解】由題設(shè)知:且,又,∴,故橢圓C的方程為.小問2詳解】聯(lián)立直線與橢圓,可得:,∴,即直線與橢圓相離,∴只需求平行于直線且與橢圓相切的切線與直線最大距離即為所求,令平行于直線且與橢圓相切的直線為,聯(lián)立橢圓,整理可得:,∴,可得,當(dāng),切線為,其與直線距離為;當(dāng),切線為,其與直線距離為;綜上,時,與橢圓切點與直線距離最大為.18、(1)1;(2)y=x+7【解析】(1)設(shè)A(x1,y1),B(x2,y2),直線AB的斜率k==,代入即可求得斜率;(2)由(1)中直線AB的斜率,根據(jù)導(dǎo)數(shù)的幾何意義求得M點坐標(biāo),設(shè)直線AB的方程為y=x+m,與拋物線聯(lián)立,求得根,結(jié)合弦長公式求得AB,由知,|AB|=2|MN|,從而求得參數(shù)m.【詳解】解:(1)設(shè)A(x1,y1),B(x2,y2),則x1≠x2,y1=,y2=,x1+x2=4,于是直線AB的斜率k===1(2)由y=,得y′=設(shè)M(x3,y3),由題設(shè)知=1,解得x3=2,于是M(2,1)設(shè)直線AB的方程為y=x+m,故線段AB的中點為N(2,2+m),|MN|=|m+1|將y=x+m代入y=得x2-4x-4m=0當(dāng)Δ=16(m+1)>0,即m>-1時,x1,2=2±2從而|AB|=|x1-x2|=由題設(shè)知|AB|=2|MN|,即=2(m+1),解得m=7所以直線AB的方程為y=x+719、(1).(2).【解析】(1)由已知得圓心C在直線上,設(shè)圓C與x軸的交點分別為E、F,則有,,圓心C的坐標(biāo)為(2,1),由此求得圓C的標(biāo)準(zhǔn)方程;(2)假設(shè)存在弦被點P平分,有,由此求得直線AB的斜率可得其方程再檢驗,直線AB與圓C是否相交即可.小問1詳解】解:因為圓C與y軸相切于點,所以圓心C在直線上,設(shè)圓C與x軸的交點分別為E、F,由圓C被x軸分成的兩段弧長之比為2∶1,得,所以,圓心C的坐標(biāo)為(2,1),所以圓C的方程為;【小問2詳解】解:因為點,有,所以點P在圓C的內(nèi)部,假設(shè)存在弦被點P平分,則,又,所以,所以直線AB的方程為,即,檢驗,圓心C到直線AB的距離為,所以直線AB與圓C相交,所以存在弦被點P平分,此時直線的方程為.20、(1)證明見解析(2)【解析】(1)根據(jù)等腰三角形三線合一的性質(zhì)得到、,即可得到平面,再根據(jù),即可得證;(2)由面面垂直的性質(zhì)得到平面,建立如圖所示空間直角坐標(biāo)系,設(shè),即可得到點,,的坐標(biāo),最后利用空間向量法求出二面角的余弦值;小問1詳解】證明:連接DE因為,且D為AC的中點,所以因為,且D為AC的中點,所以因為平面BDE,平面BDE,且,所以平面因為,所以平面BDE,所以【小問2詳解】解:由(1)可知因為平面平面,平面平面,平面,所以平面,所以DC,DB,DE兩兩垂直以D為原點,分別以,,的方向為x,y,z軸的正方向,建立如圖所示的空間直角坐標(biāo)系設(shè).則,,.從而,設(shè)平面BCE的法向量為,則令,得平面ABC的一個法向量為設(shè)二面角為,由圖可知為銳角,則21、(1)或;(2).【解析】(1)根據(jù)題意設(shè)出直線的方程,然后根據(jù)直線與圓相切,即可求出答案;(2)首先根據(jù)題意判斷出最小圓的圓心在直線上,且最小圓的半徑為,然后設(shè)出最小圓的圓心為,則圓心到直線的距離為,從而可求出答案.【小問1詳解】因為直線不過原點,設(shè)直線的方程為,圓的標(biāo)準(zhǔn)方程為,若直線與圓相切,則,即,解得或者3,所以直線的方程為或者;【小問2詳解】因為,所以直線與圓相離,所以所求最小圓的圓心一定在圓的圓心到直線的垂線段上,即最小圓的圓心在直線上,且最小圓的半徑為,設(shè)最小圓的圓心為,則圓心到直線的距離為,所以,即,解得(舍)或,所以最小的圓的方程為.22、(1),,,均值為65.6(2)【解析】(1)根據(jù)a,b,c成等比數(shù)列且公比為2,得到a,b,c的關(guān)系,利用頻率之和為1,求出a,b,c,估計評分的均值;(2)利用列舉法得到基本事件,求出相應(yīng)的概率.【小問1詳解】由題意得,,,有,所以,即,解得,于是,評分在40~50,50~60,60~70,70~80,80~90,90~100的概率分別為0.15,0.20,0.30,0.20,0.10,0.05,則均分估計值為【小問2詳

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論