2026屆江蘇省南京市玄武區(qū)高二數(shù)學(xué)第一學(xué)期期末經(jīng)典模擬試題含解析_第1頁
2026屆江蘇省南京市玄武區(qū)高二數(shù)學(xué)第一學(xué)期期末經(jīng)典模擬試題含解析_第2頁
2026屆江蘇省南京市玄武區(qū)高二數(shù)學(xué)第一學(xué)期期末經(jīng)典模擬試題含解析_第3頁
2026屆江蘇省南京市玄武區(qū)高二數(shù)學(xué)第一學(xué)期期末經(jīng)典模擬試題含解析_第4頁
2026屆江蘇省南京市玄武區(qū)高二數(shù)學(xué)第一學(xué)期期末經(jīng)典模擬試題含解析_第5頁
已閱讀5頁,還剩11頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)

文檔簡介

2026屆江蘇省南京市玄武區(qū)高二數(shù)學(xué)第一學(xué)期期末經(jīng)典模擬試題注意事項1.考生要認(rèn)真填寫考場號和座位序號。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結(jié)束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.直線的傾斜角是()A. B.C. D.2.在中,已知點在線段上,點是的中點,,,,則的最小值為()A. B.4C. D.3.在平形六面體中,其中,,,,,則的長為()A. B.C. D.4.已知橢圓和雙曲線有共同的焦點,分別是它們的在第一象限和第三象限的交點,且,記橢圓和雙曲線的離心率分別為,則等于()A.4 B.2C.2 D.35.已知直線過點,當(dāng)直線與圓有兩個不同的交點時,其斜率的取值范圍是()A. B.C. D.6.已知,若對于且都有成立,則實數(shù)的取值范圍是()A. B.C. D.7.已知橢圓的短軸長和焦距相等,則a的值為()A.1 B.C. D.8.對任意實數(shù),在以下命題中,正確的個數(shù)有()①若,則;②若,則;③若,則;④若,則A. B.C. D.9.已知函數(shù),若,則()A. B.0C.1 D.210.設(shè),則當(dāng)數(shù)列{an}的前n項和取得最小值時,n的值為()A.4 B.5C.4或5 D.5或611.已知直線,,若,則實數(shù)等于()A.0 B.1C. D.1或12.已知是拋物線上的一個動點,是圓上的一個動點,是一個定點,則的最小值為A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.已知,則曲線在點處的切線方程是______.14.已知為拋物線:的焦點,為拋物線上在第一象限的點.若為的中點,為拋物線的頂點,則直線斜率的最大值為______.15.某人有樓房一棟,室內(nèi)面積共計,擬分割成兩類房間作為旅游客房,大房間每間面積為,可住游客4名,每名游客每天的住宿費(fèi)100元;小房間每間面積為,可住游客2名,每名游客每天的住宿費(fèi)150元;裝修大房間每間需要3萬元,裝修小房間每間需要2萬元.如果他只能籌款25萬元用于裝修,且假定游客能住滿客房,則該人一天能獲得的住宿費(fèi)的最大值為___________元.16.若過點和的直線與直線平行,則_______三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知是公差不為0的等差數(shù)列,其前項和為,,且,,成等比數(shù)列.(1)求和;(2)若,數(shù)列的前項和為,且對任意的恒成立,求實數(shù)的取值范圍.18.(12分)已知橢圓的中心在原點,對稱軸為坐標(biāo)軸且焦點在軸上,拋物線:,若拋物線的焦點在橢圓上,且橢圓的離心率為.(1)求橢圓的方程;(2)已知斜率存在且不為零的直線滿足:與橢圓相交于不同兩點、,與直線相交于點.若橢圓上一動點滿足:,,且存在點,使得恒為定值,求的值.19.(12分)已知為坐標(biāo)原點,圓的圓心在軸上,點、均在圓上.(1)求圓的標(biāo)準(zhǔn)方程;(2)若直線與橢圓交于兩個不同的點、,點在圓上,求面積的最大值.20.(12分)已知等差數(shù)列的首項為2,公差為8.在中每相鄰兩項之間插入三個數(shù),使它們與原數(shù)列的項一起構(gòu)成一個新的等差數(shù)列.(1)求數(shù)列的通項公式;(2)若,,,,是從中抽取的若干項按原來的順序排列組成的一個等比數(shù)列,,,令,求數(shù)列的前項和.21.(12分)在①成等差數(shù)列;②成等比數(shù)列;③這三個條件中任選一個,補(bǔ)充在下面的問題中,并對其求解.問題:已知為數(shù)列的前項和,,且___________.(1)求數(shù)列的通項公式;(2)記,求數(shù)列的前項和.注:如果選擇多個條件分別解答,按第一個解答計分.22.(10分)已知直線l的斜率為-2,且與兩坐標(biāo)軸的正半軸圍成三角形的面積等于1.圓C的圓心在第四象限,直線l經(jīng)過圓心,圓C被x軸截得的弦長為4.若直線x-2y-1=0與圓C相切,求圓C的方程

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、A【解析】將直線方程化為斜截式,由此確定斜率;根據(jù)斜率和傾斜角關(guān)系可得結(jié)果.【詳解】設(shè)直線的傾斜角為,則,由得:,則斜率,.故選:A.2、C【解析】利用三點共線可得,由,利用基本不等式即可求解.【詳解】由點是的中點,則,又因為點在線段上,則,所以,當(dāng)且僅當(dāng),時取等號,故選:C【點睛】本題考查了基本不等式求最值、平面向量共線的推論,考查了基本運(yùn)算求解能力,屬于基礎(chǔ)題.3、B【解析】根據(jù)空間向量基本定理、加法的運(yùn)算法則,結(jié)合空間向量數(shù)量積的運(yùn)算性質(zhì)進(jìn)行求解即可.【詳解】因為是平行六面體,所以,所以有:,因此有:,因為,,,,,所以,所以,故選:B4、A【解析】設(shè)橢圓的長半軸長為,雙曲線的實半軸長為,由定義可得,,在中利用余弦定理可得,即可求出結(jié)果.【詳解】設(shè)橢圓的長半軸長為,雙曲線的實半軸長為,不妨設(shè)在第一象限,根據(jù)橢圓和雙曲線定義,得,,,由可得,又,在中,,即,化簡得,兩邊同除以,得.故選:A.【點睛】關(guān)鍵點睛:本題考查共焦點的橢圓與雙曲線的離心率問題,解題的關(guān)鍵是利用定義以及焦點三角形的關(guān)系列出齊次方程式進(jìn)行求解.5、A【解析】設(shè)直線方程,利用圓與直線的關(guān)系,確定圓心到直線的距離小于半徑,即可求得斜率范圍.【詳解】如下圖:設(shè)直線l的方程為即圓心為,半徑是1又直線與圓有兩個不同的交點故選:A6、D【解析】根據(jù)題意轉(zhuǎn)化為對于且時,都有恒成立,構(gòu)造函數(shù),轉(zhuǎn)化為時,恒成立,求得的導(dǎo)數(shù),轉(zhuǎn)化為在上恒成立,即可求解.【詳解】由題意,對于且都有成立,不妨設(shè),可得恒成立,即對于且時,都有恒成立,構(gòu)造函數(shù),可轉(zhuǎn)化為,函數(shù)為單調(diào)遞增函數(shù),所以當(dāng)時,恒成立,又由,所以在上恒成立,即在上恒成立,又由,所以,即實數(shù)取值范圍為.故選:D7、A【解析】由題設(shè)及橢圓方程可得,即可求參數(shù)a的值.【詳解】由題設(shè)易知:橢圓參數(shù),即有,可得故選:A8、B【解析】直接利用不等式的基本性質(zhì)判斷.【詳解】①因為,則,根據(jù)不等式性質(zhì)得,故正確;②當(dāng)時,,而,故錯誤;③因為,所以,即,故正確;④當(dāng)時,,故錯誤;故選:B9、D【解析】求出函數(shù)的導(dǎo)數(shù),直接代入即可求值.【詳解】因為,所以,所以,所以.故選:D.10、A【解析】結(jié)合等差數(shù)列的性質(zhì)得到,解不等式組即可求出結(jié)果.【詳解】由,即,解得,因為,故.故選:A.11、C【解析】由題意可得,則由得,從而可求出的值【詳解】由題意可得,因為,,,所以,解得,故選:C12、A【解析】恰好為拋物線的焦點,等于到準(zhǔn)線的距離,要想最小,過圓心作拋物線的準(zhǔn)線的垂線交拋物線于點,交圓于,最小值等于圓心到準(zhǔn)線的距離減去半徑4-1=.考點:1.拋物線的定義;2.圓中的最值問題;二、填空題:本題共4小題,每小題5分,共20分。13、【解析】求導(dǎo),得到,寫出切線方程.【詳解】因為,所以,則,所以曲線在點處的切線方程是,即,故答案為:14、1【解析】由題意,可得,設(shè),,,根據(jù)是線段的中點,求出的坐標(biāo),可得直線的斜率,利用基本不等式即可得結(jié)論【詳解】解:由題意,可得,設(shè),,,,是線段的中點,則,,,當(dāng)且僅當(dāng)時取等號,直線的斜率的最大值為1故答案為:115、3600【解析】先設(shè)分割大房間為間,小房間為間,收益為元,列出約束條件,再根據(jù)約束條件畫出可行域,設(shè),再利用的幾何意義求最值,只需求出直線過可行域內(nèi)的整數(shù)點時,從而得到值即可【詳解】解:設(shè)裝修大房間間,小房間間,收益為萬元,則,目標(biāo)函數(shù),由,解得畫出可行域,得到目標(biāo)函數(shù)過點時,有最大值,故應(yīng)隔出大房間3間和小房間8間,每天能獲得最大的房租收益最大,且為3600元故答案為:360016、【解析】根據(jù)兩直線的位置關(guān)系求解.【詳解】因為過點和的直線與直線平行,所以,解得,故答案為:3三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1),;(2).【解析】(1)求出,即得數(shù)列的和;(2)由題得,再利用分組求和求出,得到,令,判斷函數(shù)的單調(diào)性得解.【詳解】(1)設(shè)數(shù)列的公差為,由已知得,,即,整理得,又,,;(2)由題意:,,,令,則,即對任意的恒成立,是單調(diào)遞增數(shù)列,,只需,所以.【點睛】方法點睛:求數(shù)列的最值,常用數(shù)列的單調(diào)性求解,求數(shù)列的單調(diào)性,一般利用定義法作差或作商判斷.18、(1)(2)【解析】(1)先求得橢圓的,代入公式即可求得橢圓的方程;(2)以設(shè)而不求的方法得到兩根和,再由條件,得到四邊形為平行四邊形,并以向量方式進(jìn)行等價轉(zhuǎn)化,再與恒為定值進(jìn)行聯(lián)系,即可求得的值.【小問1詳解】由條件可設(shè)橢圓:,因為拋物線:的焦點為,所以,解得因為橢圓離心率為,所以,則,故橢圓的方程為【小問2詳解】設(shè)直線:,,,把直線的方程代入橢圓的方程,可得,所以,因為,,所以四邊形為平行四邊形,得,即,得由在橢圓上可得,,即因為,又所以,所以將代入得,所以,即.【點睛】數(shù)形結(jié)合是數(shù)學(xué)解題中常用的思想方法,數(shù)形結(jié)合的思想可以使某些抽象的數(shù)學(xué)問題直觀化、生動化,能夠變抽象思維為形象思維,有助于把握數(shù)學(xué)問題的本質(zhì);另外,由于使用了數(shù)形結(jié)合的方法,很多問題便迎刃而解,且解法簡捷。19、(1);(2).【解析】(1)求出圓心坐標(biāo),可求得圓的半徑,進(jìn)而可得出圓的標(biāo)準(zhǔn)方程;(2)求得點到直線的距離,將直線的方程與橢圓的方程聯(lián)立,求得的表達(dá)式,利用三角形的面積公式結(jié)合基本不等式可求得結(jié)果.【小問1詳解】解:由題知,線段的中點為,直線的斜率,所以線段的中垂線為,即為,所以圓的圓心為軸與的交點,所以圓的半徑,所以圓的標(biāo)準(zhǔn)方程為.【小問2詳解】解:由題知:圓心到直線的距離,因為,所以圓心到直線的距離,所以到直線的距離,設(shè)點、,聯(lián)立可得,,,則,所以,,所以,所以,所以當(dāng)且僅當(dāng),即時等號成立,所以當(dāng)時,取得最大值.【點睛】方法點睛:圓錐曲線中的最值問題解決方法一般分兩種:一是幾何法,特別是用圓錐曲線的定義和平面幾何的有關(guān)結(jié)論來求最值;二是代數(shù)法,常將圓錐曲線的最值問題轉(zhuǎn)化為二次函數(shù)或三角函數(shù)的最值問題,然后利用基本不等式、函數(shù)的單調(diào)性或三角函數(shù)的有界性等求最值20、(1);(2)【解析】(1)由題意在中每相鄰兩項之間插入三個數(shù),使它們與原數(shù)列的項一起構(gòu)成一個新的等差數(shù)列,可知的公差,進(jìn)而可求出其通項公式;(2)根據(jù)題意可得,進(jìn)而得到,再代入中得,利用錯位相減即可求出前項和.【小問1詳解】由于等差數(shù)列的公差為8,在中每相鄰兩項之間插入三個數(shù),使它們與原數(shù)列的項一起構(gòu)成一個新的等差數(shù)列,則的公差,的首項和首項相同為2,則數(shù)列的通項公式為.【小問2詳解】由于,是等比數(shù)列的前兩項,且,,則,則等比數(shù)列的公比為3,則,即,.①.②.①減去②得..21、(1)(2)【解析】(1)由可知數(shù)列是公比為的等比數(shù)列,若選①:結(jié)合等差數(shù)列等差中項的性質(zhì)計算求解;若選②:利用等比數(shù)列等比中項的性質(zhì)計算求解,若選③:利用直接計算;(2)根據(jù)對數(shù)的運(yùn)算,可知數(shù)列為等差數(shù)列,直接求和即可.小問1詳解】由,當(dāng)時,,即,即,所以數(shù)列是公比為的等比數(shù)列,若選①:由,即,,所以數(shù)列的通項公式為;若選②:由,所以,所以數(shù)列的通項公式為;若選③:由,即,所以數(shù)列的通項公式為;【小問2詳解】由(1)得,所以數(shù)列等差數(shù)列,所以.22

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論