版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領
文檔簡介
葫蘆島市重點中學2026屆數(shù)學高二上期末達標檢測試題注意事項:1.答題前,考生先將自己的姓名、準考證號碼填寫清楚,將條形碼準確粘貼在條形碼區(qū)域內(nèi)。2.答題時請按要求用筆。3.請按照題號順序在答題卡各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試卷上答題無效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.若雙曲線經(jīng)過點,且它的兩條漸近線方程是,則雙曲線的方程是()A. B.C. D.2.已知拋物線C:y2=8x的焦點為F,準線為l,P是l上一點,Q是直線PF與C的一個交點,若,則|QF|=()A. B.C.3 D.23.下列函數(shù)求導錯誤的是()A.B.C.D.4.在中,B=30°,BC=2,AB=,則邊AC的長等于()A. B.1C. D.25.已知等比數(shù)列{an}中,,,則()A. B.1C. D.46.丹麥數(shù)學家琴生(Jensen)是世紀對數(shù)學分析做出卓越貢獻的巨人,特別是在函數(shù)的凸凹性與不等式方面留下了很多寶貴的成果.設函數(shù)在上的導函數(shù)為,在上的導函數(shù)為,在上恒成立,則稱函數(shù)在上為“凹函數(shù)”.則下列函數(shù)在上是“凹函數(shù)”的是()A. B.C. D.7.橢圓的焦點坐標為()A., B.,C., D.,8.下列命題中正確的個數(shù)為()①若向量,與空間任意向量都不能構成基底,則;②若向量,,是空間一組基底,則,,也是空間的一組基底;③為空間一組基底,若,則;④對于任意非零空間向量,,若,則A.1 B.2C.3 D.49.在平面直角坐標系中,直線+的傾斜角是()A. B.C. D.10.數(shù)列滿足,,,則數(shù)列的前10項和為()A.60 B.61C.62 D.6311.命題“若,則”為真命題,那么不可能是()A. B.C. D.12.下列數(shù)列是遞增數(shù)列的是()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.在數(shù)列中,,,則數(shù)列的前6項和為___________.14.如圖,已知橢圓+y2=1的左焦點為F,O為坐標原點,設過點F且不與坐標軸垂直的直線交橢圓于A,B兩點,線段AB的垂直平分線與x軸交于點G,則點G橫坐標的取值范圍為________15.如圖,在正四棱錐中,為棱PB的中點,為棱PD的中點,則棱錐與棱錐的體積之比為______16.在平面直角坐標系中,直線與的交點為,以為圓心作圓,圓上的點到軸的最小距離為(Ⅰ)求圓的標準方程;(Ⅱ)過點作圓的切線,求切線的方程三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)如圖,在棱長為3的正方體中,分別是上的點且(1)求證:;(2)求平面與平面的夾角的余弦值18.(12分)已知等差數(shù)列的前n項和為Sn,S9=81,,求:(1)Sn;(2)若S3、、Sk成等比數(shù)列,求k19.(12分)從橢圓上一點P向x軸作垂線,垂足恰為左焦點,A是橢圓C與x軸正半軸的交點,直線AP的斜率為,若橢圓長軸長為8(1)求橢圓C的方程;(2)點Q為橢圓上任意一點,求面積的最大值20.(12分)已知數(shù)列的前n項積,數(shù)列為等差數(shù)列,且,(1)求與的通項公式;(2)若,求數(shù)列的前n項和21.(12分)已知雙曲線的漸近線方程為,且過點(1)求雙曲線的方程;(2)過雙曲線的一個焦點作斜率為的直線交雙曲線于兩點,求弦長22.(10分)中,內(nèi)角、、所對的邊為、、,.(1)求角的大?。唬?)若、、成等差數(shù)列,且,求邊長的值.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、A【解析】根據(jù)雙曲線漸近線方程設出方程,再由其過的點即可求解.【詳解】漸近線方程是,設雙曲線方程為,又因為雙曲線經(jīng)過點,所以有,所以雙曲線方程為,化為標準方程為.故選:A2、C【解析】過點Q作QQ′⊥l交l于點Q′,利用拋物線定義以及相似得到|QF|=|QQ′|=3.【詳解】如圖所示:過點Q作QQ′⊥l交l于點Q′,因為,所以|PQ|∶|PF|=3∶4,又焦點F到準線l的距離為4,所以|QF|=|QQ′|=3.故選C.【點睛】本題考查了拋物線的定義應用,意在考查學生的計算能力.3、C【解析】每一個選項根據(jù)求導公式及法則來運算即可判斷.【詳解】對于A,,正確;對于B,,正確;對于C,,不正確;對于D,,正確.故選:C4、B【解析】利用余弦定理即得【詳解】由余弦定理,得,解得AC=1故選:B.5、D【解析】設公比為,然后由已知條件結(jié)合等比數(shù)列的通項公式列方程求出,從而可求出,【詳解】設公比為,因為等比數(shù)列{an}中,,,所以,所以,解得,所以,得故選:D6、B【解析】根據(jù)“凹函數(shù)”的定義逐項驗證即可解出【詳解】對A,,當時,,所以A錯誤;對B,,在上恒成立,所以B正確;對C,,,所以C錯誤;對D,,,因為,所以D錯誤故選:B7、A【解析】由題方程化為橢圓的標準方程求出c,則橢圓的焦點坐標可求【詳解】由題得方程可化為,所以所以焦點為故選:A.8、C【解析】根據(jù)題意、空間向量基底的概念和共線的運算即可判斷命題①②③,根據(jù)空間向量的平行關系即可判斷命題④.【詳解】①:向量與空間任意向量都不能構成一個基底,則與共線或與其中有一個為零向量,所以,故①正確;②:由向量是空間一組基底,則空間中任意一個向量,存在唯一的實數(shù)組使得,所以也是空間一組基底,故②正確;③:由為空間一組基底,若,則,所以,故③正確;④:對于任意非零空間向量,,若,則存在一個實數(shù)使得,有,又中可以有為0的,分式?jīng)]有意義,故④錯誤.故選:C9、B【解析】由直線方程得斜率,從而得傾斜角【詳解】由直線方程知直角斜率為,在上正切值為1的角為,即為傾斜角故選:B10、B【解析】討論奇偶性,應用等差、等比前n項和公式對作分組求和即可.【詳解】當且為奇數(shù)時,,則,當且為偶數(shù)時,,則,∴.故選:B.11、D【解析】根據(jù)命題真假的判斷,對四個選項一一驗證即可.【詳解】對于A:若,則必成立;對于B:若,則必成立;對于C:若,則必成立;對于D:由不能得出,所以不可能是.故選:D12、C【解析】分別判斷的符號,從而可得出答案.【詳解】解:對于A,,則,所以數(shù)列為遞減數(shù)列,故A不符合題意;對于B,,則,所以數(shù)列為遞減數(shù)列,故B不符合題意;對于C,,則,所以數(shù)列為遞增數(shù)列,故C符合題意;對于D,,則,所以數(shù)列遞減數(shù)列,故D不符合題意.故選:C.二、填空題:本題共4小題,每小題5分,共20分。13、129【解析】依次寫出前6項,即可求得數(shù)列的前6項和.【詳解】數(shù)列中,,則,,,則數(shù)列的前6項和為故答案為:12914、【解析】設直線的方程為,設點、,將直線的方程與橢圓的方程聯(lián)立,列出韋達定理,求出線段的垂直平分線方程,可求得點的橫坐標,利用不等式的基本性質(zhì)可求得點的橫坐標的取值范圍.【詳解】設直線的方程為,聯(lián)立,整理可得,因為直線過橢圓的左焦點,所以方程有兩個不相等的實根設點、,設的中點為,則,,直線的垂直平分線的方程為,令,則.因為,所以故點的橫坐標的取值范圍.故答案為:15、【解析】根據(jù)圖形可求出與棱錐的體積之比,即可求出結(jié)果【詳解】如圖所示:棱錐可看成正四棱錐減去四個小棱錐的體積得到,設正四棱錐的體積為,為PB的中點,為PD的中點,所以,而,同理,故棱錐的體積的為,即棱錐與棱錐的體積之比為故答案為:.16、(Ⅰ);(Ⅱ)或【解析】(Ⅰ)求出點的坐標,設圓的半徑為,圓上的點到軸的最小距離為1求得的值,由此可得出圓的標準方程;(Ⅱ)對切線的斜率是否存在進行分類討論,當切線的斜率不存在時,可得切線方程為,驗證即可;當切線的斜率存在時,可設所求切線的方程為,利用圓心到切線的距離等于圓的半徑可求得的值,綜合可得出所求切線的方程.【詳解】(Ⅰ)聯(lián)立方程組,解得,即點設圓的半徑為,由于圓上的點到軸的最小距離為,則,所以,故圓的標準方程為;(Ⅱ)若切線的斜率不存在,則所求切線的方程為,圓心到直線的距離為,不合乎題意;若切線的斜率存在,可設切線的方程為,即,圓的圓心坐標為,半徑為,由題意可得,整理得,解得或故所求切線方程為或【點睛】本題考查圓的標準方程的求解,同時也考查了過圓外一點的圓的切線方程的求解,考查計算能力,屬于中等題.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1)證明見解析(2)【解析】(1)建立空間直角坐標系后得到相關向量,再運用數(shù)量積證明;(2)求出相關平面的法向量,再運用夾角公式計算即可.【小問1詳解】建立如下圖所示的空間直角坐標系:,,,,,∴,故.【小問2詳解】,,,設平面的一個法向量為,由,令,則,取平面的一個法向量為,設平面與平面夾角為,易知:為銳角,故,即平面與平面夾角的余弦值為.18、(1)Sn=n2(2)11【解析】(1)由等差數(shù)列前n項和公式與下標和性質(zhì)先求,然后結(jié)合可解;(2)由(1)中結(jié)論和已知列方程可解.【小問1詳解】由,解得,又∵,∴,,∴【小問2詳解】∵S3,S17–S16,Sk成等比數(shù)列,∴S3Sk=(S17–S16)2=,即9k2=332,解得:k=1119、(1)(2)18【解析】(1)易得,,進而有,再結(jié)合已知即可求解;(2)由(1)易得直線AP的方程為,,設與直線AP平行的直線方程為,由題意,當該直線與橢圓相切時,記與AP距離比較遠的直線與橢圓的切點為Q,此時的面積取得最大值,將代入橢圓方程,聯(lián)立即可得與AP距離比較遠的切線方程,從而即可求解.【小問1詳解】解:由題意,將代入橢圓方程,得,又∵,∴,化簡得,解得,又,,所以,∴,∴橢圓的方程為;【小問2詳解】解:由(1)知,直線AP的方程為,即,設與直線AP平行的直線方程為,由題意,當該直線與橢圓相切時,記與AP距離比較遠的直線與橢圓的切點為Q,此時的面積取得最大值,將代入橢圓方程,化簡可得,由,即,解得,所以與AP距離比較遠的切線方程,因為與之間的距離,又,所以的面積的最大值為20、(1),.(2).【解析】(1)由已知得,,兩式相除得,由已知得,求得數(shù)列的公差為,由等差數(shù)列的通項公式可求得;(2)運用錯位相減法可求得.【小問1詳解】解:因為數(shù)列的前n項積,所以,所以,兩式相除得,因為數(shù)列為等差數(shù)列,且,,所以,即,所以數(shù)列的公差為,所以,所以,【小問2詳解】解:由(1)得,所以,,所以,所以.21、(1);(2).【解析】(1)根據(jù)雙曲線漸近線斜率、雙曲線過點可構造方程求得,由此可得雙曲線方程;(2)由雙曲線方程可得焦點坐標,由此可得方程,與雙曲線方程聯(lián)立后,利用弦長公式可求得結(jié)果.【小問1詳解】由雙曲線方程知:漸近線斜率,又漸近線方程為,;雙曲線過點,;由得:,雙曲線的方程為:;
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 中學學生食堂食品安全管理制度
- 養(yǎng)老院工作人員服務態(tài)度規(guī)范制度
- 企業(yè)內(nèi)部保密責任追究制度
- 公共交通車輛駕駛?cè)藛T培訓考核制度
- 2026年機器人技術與未來應用趨勢考核題
- 2026年現(xiàn)代企業(yè)管理知識測試題庫企業(yè)戰(zhàn)略與組織管理
- 2026年化工原理與工藝流程模擬練習題
- 2026年法律職業(yè)資格考試專題訓練憲法與行政法
- 2026年祠堂修繕捐款協(xié)議
- 古田會議永放光芒課件
- 2026年及未來5年市場數(shù)據(jù)中國鮮雞肉行業(yè)市場深度研究及投資規(guī)劃建議報告
- 診所相關衛(wèi)生管理制度
- 2024-2025學年廣東深圳實驗學校初中部八年級(上)期中英語試題及答案
- 牛津版八年級英語知識點總結(jié)
- 2026中國電信四川公用信息產(chǎn)業(yè)有限責任公司社會成熟人才招聘備考題庫及完整答案詳解
- 2026中國電信四川公用信息產(chǎn)業(yè)有限責任公司社會成熟人才招聘備考題庫含答案詳解
- 江門市2025屆普通高中高三10月調(diào)研測試 英語試卷(含答案)
- 天鵝到家合同模板
- 人力資源行業(yè)招聘管理系統(tǒng)設計方案
- 中考字音字形練習題(含答案)-字音字形專項訓練
- 2024屆新高考物理沖刺復習:“正則動量”解決帶電粒子在磁場中的運動問題
評論
0/150
提交評論