重慶長壽中學(xué)2026屆高二上數(shù)學(xué)期末統(tǒng)考模擬試題含解析_第1頁
重慶長壽中學(xué)2026屆高二上數(shù)學(xué)期末統(tǒng)考模擬試題含解析_第2頁
重慶長壽中學(xué)2026屆高二上數(shù)學(xué)期末統(tǒng)考模擬試題含解析_第3頁
重慶長壽中學(xué)2026屆高二上數(shù)學(xué)期末統(tǒng)考模擬試題含解析_第4頁
重慶長壽中學(xué)2026屆高二上數(shù)學(xué)期末統(tǒng)考模擬試題含解析_第5頁
已閱讀5頁,還剩12頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡介

重慶長壽中學(xué)2026屆高二上數(shù)學(xué)期末統(tǒng)考模擬試題注意事項(xiàng):1.答題前,考生先將自己的姓名、準(zhǔn)考證號碼填寫清楚,將條形碼準(zhǔn)確粘貼在條形碼區(qū)域內(nèi)。2.答題時(shí)請按要求用筆。3.請按照題號順序在答題卡各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試卷上答題無效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準(zhǔn)使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.已知拋物線過點(diǎn),則拋物線的焦點(diǎn)坐標(biāo)為()A. B.C. D.2.如圖,在長方體中,若,,則異面直線和所成角的余弦值為()A. B.C. D.3.由直線上的點(diǎn)向圓引切線,則切線長的最小值為()A. B.C.4 D.24.命題“若,則”的逆否命題是()A.若,則 B.若,則C.若,則 D.若,則5.若存在過點(diǎn)(0,-2)的直線與曲線和曲線都相切,則實(shí)數(shù)a的值是()A.2 B.1C.0 D.-26.過點(diǎn),的直線的斜率等于2,則的值為()A.0 B.1C.3 D.47.在等差數(shù)列中,,,則使數(shù)列的前n項(xiàng)和成立的最大正整數(shù)n=()A.2021 B.2022C.4041 D.40428.已知經(jīng)過兩點(diǎn)(5,m)和(m,8)的直線的斜率等于1,則m的值為()A.5 B.8C. D.79.下列命題中,真命題的個(gè)數(shù)為()(1)是為雙曲線的充要條件;(2)若,則;(3)若,,則;(4)橢圓上的點(diǎn)距點(diǎn)最近的距離為;A.個(gè) B.個(gè)C.個(gè) D.個(gè)10.函數(shù)的大致圖象為A. B.C. D.11.命題“,”的否定是()A., B.,C, D.,12.已知三維數(shù)組,,且,則實(shí)數(shù)()A.-2 B.-9C. D.2二、填空題:本題共4小題,每小題5分,共20分。13.若兩條直線與互相垂直,則a的值為______.14.幾位大學(xué)生響應(yīng)國家創(chuàng)業(yè)號召,開發(fā)了一款面向中學(xué)生的應(yīng)用軟件.為激發(fā)大家學(xué)習(xí)數(shù)學(xué)的興趣,他們推出了“解數(shù)學(xué)題獲取軟件激活碼”活動.這款軟件的激活碼為下面數(shù)學(xué)題的答案:記集合…,…,例如:,,若將集合的各個(gè)元素之和設(shè)為該軟件的激活碼,則該激活碼應(yīng)為________.15.已知數(shù)列滿足,則=________.16.直線被圓所截得的弦中,最短弦所在直線的一般方程是__________三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)設(shè)函數(shù)(1)若,求函數(shù)的單調(diào)區(qū)間;(2)若函數(shù)有兩個(gè)不同的零點(diǎn),求實(shí)數(shù)的取值范圍18.(12分)已知雙曲線與橢圓有公共焦點(diǎn),且它的一條漸近線方程為.(1)求橢圓的焦點(diǎn)坐標(biāo);(2)求雙曲線的標(biāo)準(zhǔn)方程19.(12分)(1)敘述正弦定理;(2)在△中,應(yīng)用正弦定理判斷“”是“”成立的什么條件,并加以證明.20.(12分)已知函數(shù),.(1)當(dāng)時(shí),求曲線在點(diǎn)處的切線方程;(2)若在區(qū)間上有唯一的零點(diǎn).(ⅰ)求的取值范圍;(ⅱ)證明:.21.(12分)如圖,已知拋物線的焦點(diǎn)為,點(diǎn)是軸上一定點(diǎn),過的直線交與兩點(diǎn).(1)若過的直線交拋物線于,證明縱坐標(biāo)之積為定值;(2)若直線分別交拋物線于另一點(diǎn),連接交軸于點(diǎn).證明:成等比數(shù)列.22.(10分)如圖1,在邊長為2的菱形ABCD中,∠BAD=60°,將△BCD沿對角線BD折起到△BDC′的位置,如圖2所示,并使得平面BDC′⊥平面ABD,E是BD的中點(diǎn),F(xiàn)A⊥平面ABD,且FA=.圖1圖2(1)求平面FBC′與平面FBA夾角的余弦值;(2)在線段AD上是否存在一點(diǎn)M,使得⊥平面?若存在,求的值;若不存在,說明理由.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、D【解析】把點(diǎn)代入拋物線方程求出,再化成標(biāo)準(zhǔn)方程可得解.【詳解】因?yàn)閽佄锞€過點(diǎn),所以,所以拋物線方程為,方程化成標(biāo)準(zhǔn)方程為,故拋物線的焦點(diǎn)坐標(biāo)為.故選:D.2、D【解析】根據(jù)長方體中,異面直線和所成角即為直線和所成角,再結(jié)合余弦定理即可求解.【詳解】解:連接、,如下圖所示由圖可知,在長方體中,且,所以,所以異面直線和所成角即為,又,,由余弦定理可得∶故選:D.3、D【解析】切點(diǎn)與圓心的連線垂直于切線,切線長轉(zhuǎn)化為直線上點(diǎn)與圓心連線和半徑的關(guān)系,利用點(diǎn)到直線的距離公式求出圓心與直線上點(diǎn)距離的最小值,結(jié)合勾股定理即可得出結(jié)果.【詳解】設(shè)為直線上任意一點(diǎn),,切線長的最小值為:,故選:D.4、C【解析】根據(jù)逆否命題的定義寫出逆否命題即得【詳解】解:以否定的結(jié)論作條件、否定的條件作結(jié)論得出的命題為原命題的逆否命題,即“若,則”的逆否命題是“若,則”故選:C5、A【解析】在兩曲線上設(shè)切點(diǎn),得到切線,又因?yàn)椋?,-2)在兩條切線上,列方程即可.【詳解】的導(dǎo)函數(shù)為,的導(dǎo)函數(shù)為,若直線與和的切點(diǎn)分別為(,),,∴過(0,-2)的直線為、,則有,可得故選:A.6、A【解析】利用斜率公式即求.【詳解】由題可得,∴.故選:A7、C【解析】根據(jù)等差數(shù)列的性質(zhì)易得,,再應(yīng)用等差數(shù)列前n項(xiàng)和公式及等差中項(xiàng)、下標(biāo)和的性質(zhì)可得、,即可確定答案.【詳解】因?yàn)槭堑炔顢?shù)列且,,所以,,.故選:C.8、C【解析】根據(jù)斜率的公式直接求解即可.【詳解】由題可知,,解得.故選:C【點(diǎn)睛】本題主要考查了兩點(diǎn)間斜率的計(jì)算公式,屬于基礎(chǔ)題.9、A【解析】利用方程表示雙曲線求出的取值范圍,利用集合的包含關(guān)系可判斷(1)的正誤;直接判斷命題的正誤,可判斷(2)的正誤;利用空間向量垂直的坐標(biāo)表示可判斷(3)的正誤;利用橢圓的有界性可判斷(4)的正誤.【詳解】對于(1),若曲線為雙曲線,則,即,解得或,因?yàn)榛?,因此,是為雙曲線的充分不必要條件,(1)錯(cuò);對于(2),若,則或,(2)錯(cuò);對于(3),,則,(3)對;對于(4),設(shè)點(diǎn)為橢圓上一點(diǎn),則且,則點(diǎn)到點(diǎn)的距離為,(4)錯(cuò).故選:A.10、D【解析】根據(jù)函數(shù)奇偶性排除A、C.當(dāng)時(shí)排除B【詳解】解:由可得所以函數(shù)為偶函數(shù),排除A、C.因?yàn)闀r(shí),,排除B.故選:D.11、D【解析】由含量詞命題否定的定義,寫出命題的否定即可【詳解】命題“,”的否定是:,,故選:D.12、D【解析】由空間向量的數(shù)量積運(yùn)算即可求解【詳解】∵,,,,,,且,∴,解得故選:D二、填空題:本題共4小題,每小題5分,共20分。13、4【解析】兩直線斜率均存在時(shí),兩直線垂直,斜率相乘等于-1,據(jù)此即可求解.【詳解】由題可知,.故答案為:4.14、376【解析】由題設(shè)知集合的規(guī)律為最小的元素為且元素構(gòu)成公差1的等差數(shù)列,共有個(gè)元素,即可寫出的所有元素,應(yīng)用等差數(shù)列前n項(xiàng)和公式求激活碼.【詳解】由題設(shè),或,即,或,即,所以或,則,故各個(gè)元素之和為.故答案為:.15、4【解析】根據(jù)對數(shù)的運(yùn)算性質(zhì)得,可得,即數(shù)列是以2為公比的等比數(shù)列,代入等比數(shù)列的通項(xiàng)公式化簡可得值.【詳解】因?yàn)?,所以,即?shù)列是以2為公比的等比數(shù)列,所以.故答案為:4.【點(diǎn)睛】本題考查等比數(shù)列的定義和通項(xiàng)公式以及對數(shù)的運(yùn)算性質(zhì),熟練運(yùn)用相應(yīng)的公式即可,屬于基礎(chǔ)題.16、【解析】先求出直線所過的定點(diǎn),當(dāng)該定點(diǎn)為弦的中點(diǎn)時(shí)弦長最短,利用點(diǎn)斜式求出直線方程,整理成一般式即可.【詳解】即,令,解得即直線過定點(diǎn)圓的圓心為,半徑為,最短弦所在直線的方程為整理得最短弦所在直線的一般方程是故答案為:.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)的單調(diào)遞減區(qū)間為,單調(diào)遞增區(qū)間為;(2).【解析】(1)求出,進(jìn)而判斷函數(shù)的單調(diào)性,然后討論符號后可得函數(shù)的單調(diào)區(qū)間;(2)令,則有兩個(gè)不同的零點(diǎn),利用導(dǎo)數(shù)討論的單調(diào)性并結(jié)合零點(diǎn)存在定理可得實(shí)數(shù)的取值范圍.【小問1詳解】當(dāng)時(shí),,,記,則,所以在上單調(diào)遞增,又,所以當(dāng)時(shí),;當(dāng)時(shí),,所以單調(diào)遞減區(qū)間為,單調(diào)遞增區(qū)間為【小問2詳解】令,得,記,則,令得,列表得.x0↘極小值↗要使在上有兩個(gè)零點(diǎn),則,所以且函數(shù)在和上各有一個(gè)零點(diǎn)當(dāng)時(shí),,,,則,故上無零點(diǎn),與函數(shù)在上有一個(gè)零點(diǎn)矛盾,故不滿足條件所以,又因?yàn)?,所以考慮,設(shè),,則,則在上單調(diào)遞減,故當(dāng)時(shí),,所以,且,因?yàn)?,所以,由零點(diǎn)存在定理知在和上各有一個(gè)零點(diǎn)綜上可知,實(shí)數(shù)a的取值范圍為【點(diǎn)睛】方法點(diǎn)睛:利用導(dǎo)數(shù)研究零點(diǎn)問題:(1)確定零點(diǎn)的個(gè)數(shù)問題:可利用數(shù)形結(jié)合的辦法判斷交點(diǎn)個(gè)數(shù),如果函數(shù)較為復(fù)雜,可用導(dǎo)數(shù)知識確定極值點(diǎn)和單調(diào)區(qū)間從而確定其大致圖象;(2)方程的有解問題就是判斷是否存在零點(diǎn)的問題,可參變分離,轉(zhuǎn)化為求函數(shù)的值域問題處理.可以通過構(gòu)造函數(shù)的方法,把問題轉(zhuǎn)化為研究構(gòu)造的函數(shù)的零點(diǎn)問題;(3)利用導(dǎo)數(shù)硏究函數(shù)零點(diǎn)或方程根,通常有三種思路:①利用最值或極值研究;②利用數(shù)形結(jié)合思想研究;③構(gòu)造輔助函數(shù)硏究.18、(1);(2).【解析】(1)由橢圓方程及其參數(shù)關(guān)系求出參數(shù)c,即可得焦點(diǎn)坐標(biāo).(2)由漸近線及焦點(diǎn)坐標(biāo),可設(shè)雙曲線方程為,再由雙曲線參數(shù)關(guān)系求出參數(shù),即可得雙曲線標(biāo)準(zhǔn)方程.【小問1詳解】由題設(shè),,又,所以橢圓的焦點(diǎn)坐標(biāo)為.【小問2詳解】由題設(shè),令雙曲線為,由(1)知:,可得,所以雙曲線的標(biāo)準(zhǔn)方程為.19、(1)正弦定理見解析;(2)充要條件,證明見解析【解析】(1)用語言描述正弦定理,并用公式表達(dá)正弦定理(2)利用“大角對大邊”的性質(zhì),并根據(jù)正弦定理進(jìn)行邊角互化即可【詳解】(1)正弦定理:在任意一個(gè)三角形中,各邊和它所對角的正弦值之比相等且等于這個(gè)三角形外接圓的直徑,即.(2)是充要條件.證明如下:充分性:又故有:必要性:又綜上,是的充要條件20、(1);(2)(?。唬áⅲ┳C明見解析.【解析】(1)求出,,利用導(dǎo)數(shù)的幾何意義即可求得切線方程;(2)(ⅰ)根據(jù)題意對參數(shù)分類討論,當(dāng)時(shí),等價(jià)轉(zhuǎn)化,且構(gòu)造函數(shù),利用零點(diǎn)存在定理,即可求得參數(shù)的取值范圍;(ⅱ)根據(jù)(ⅰ)中所求得到與的等量關(guān)系,求得并構(gòu)造函數(shù),利用導(dǎo)數(shù)研究其單調(diào)性和最值,則問題得證.【小問1詳解】當(dāng)時(shí),,則,故,,則曲線在點(diǎn)處的切線方程為.【小問2詳解】(?。┮?yàn)?,故可得,因?yàn)?,則當(dāng)時(shí),,則,無零點(diǎn),不滿足題意;當(dāng)時(shí),若在有一個(gè)零點(diǎn),即在有一個(gè)零點(diǎn),也即在有一個(gè)零點(diǎn),又,則單調(diào)遞增,則只需,解得.綜上所述,若在區(qū)間上有唯一的零點(diǎn),則;(ⅱ)由(?。┛芍粼趨^(qū)間上有唯一的零點(diǎn),則,也即,則,令,則,又在都是單調(diào)增函數(shù),故是單調(diào)增函數(shù),又,故,則在單調(diào)遞增,則,故,即證.【點(diǎn)睛】本題考查導(dǎo)數(shù)的幾何意義,利用導(dǎo)數(shù)研究函數(shù)的零點(diǎn)以及最值;處理問題的關(guān)鍵是合理轉(zhuǎn)化函數(shù)零點(diǎn)問題,以及充分利用零點(diǎn)存在定理,熟練掌握構(gòu)造函數(shù)法,屬綜合困難題.21、(1)證明見解析(2)證明見解析【解析】(1)設(shè)直線方程為,聯(lián)立拋物線方程用韋達(dá)定理可得;(2)借助(1)中結(jié)論可得各點(diǎn)縱坐標(biāo)之積,進(jìn)而得到F、T、Q三點(diǎn)橫坐標(biāo)關(guān)系,然后可證.【小問1詳解】顯然過T的直線斜率不為0,設(shè)方程為,聯(lián)立,消元得到,.【小問2詳解】由(1)設(shè),因?yàn)锳P與BQ均過T(t,0)點(diǎn),可知,又AB過F點(diǎn),所以,如圖:,,設(shè)M(n,0),由(1)類比可得.,且,成等比數(shù)列.22、(1)(2)不存在,理由見解析【解析】(1)利用垂直關(guān)系,以點(diǎn)為原點(diǎn),建立空間直角坐標(biāo)系,分別求平面和平面的法向量和,利用公式,即可求解;(2)若滿足條件,,利用向量的坐標(biāo)表示,判斷是否存在點(diǎn)滿足.【小問1詳解】∵,E為BD的中點(diǎn)∴CE⊥BD,又∵平面⊥平面ABD,平面平面,⊥平面,∴⊥平面ABD,如圖以E原點(diǎn),分別以EB、AE、EC′所在直線為x軸、y軸、z軸建立空間直角坐標(biāo)系,則B(1,0,0),A(0,-,0),D(-1,0,0),F(xiàn)(0,-,2),(0,0,),∴=(-1,-,2),=(-1,0,),=(1,,0),設(shè)平面的法向量

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論