2026屆嘉興市重點(diǎn)中學(xué)數(shù)學(xué)高二上期末聯(lián)考試題含解析_第1頁(yè)
2026屆嘉興市重點(diǎn)中學(xué)數(shù)學(xué)高二上期末聯(lián)考試題含解析_第2頁(yè)
2026屆嘉興市重點(diǎn)中學(xué)數(shù)學(xué)高二上期末聯(lián)考試題含解析_第3頁(yè)
2026屆嘉興市重點(diǎn)中學(xué)數(shù)學(xué)高二上期末聯(lián)考試題含解析_第4頁(yè)
2026屆嘉興市重點(diǎn)中學(xué)數(shù)學(xué)高二上期末聯(lián)考試題含解析_第5頁(yè)
已閱讀5頁(yè),還剩14頁(yè)未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

2026屆嘉興市重點(diǎn)中學(xué)數(shù)學(xué)高二上期末聯(lián)考試題考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應(yīng)位置上。2.請(qǐng)用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準(zhǔn)考證號(hào)。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無(wú)效。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.直線的傾斜角的大小為A. B.C. D.2.若曲線的一條切線與直線垂直,則的方程為()A. B.C. D.3.已知是橢圓右焦點(diǎn),點(diǎn)在橢圓上,線段與圓相切于點(diǎn),且,則橢圓的離心率等于()A. B.C. D.4.若數(shù)列1,a,b,c,9是等比數(shù)列,則實(shí)數(shù)b的值為()A.5 B.C.3 D.3或5.“”是“直線與直線互相垂直”的()A.充分不必要條件 B.必要不充分條件C.充要條件 D.既不充分也不必要條件6.下列說(shuō)法或運(yùn)算正確的是()A.B.用反證法證明“一個(gè)三角形至少有兩個(gè)銳角”時(shí)需設(shè)“一個(gè)三角形沒(méi)有銳角”C.“,”的否定形式為“,”D.直線不可能與圓相切7.若,則()A.1 B.2C.4 D.88.已知向量,,且與互相垂直,則()A. B.C. D.9.在等腰中,在線段斜邊上任取一點(diǎn),則線段的長(zhǎng)度大于的長(zhǎng)度的概率()A. B.C. D.10.已知a,b為正實(shí)數(shù),且,則的最小值為()A.1 B.2C.4 D.611.《九章算術(shù)》是中國(guó)古代張蒼、耿壽昌所撰寫的一部數(shù)學(xué)專著,全書總結(jié)了戰(zhàn)國(guó)、秦、漢時(shí)期的數(shù)學(xué)成就,其中有如下問(wèn)題:“今有五人分五錢,令上二人所得與下三人等,問(wèn)各得幾何?”其意思為:“今有人分錢,各人所得錢數(shù)依次為等差數(shù)列,其中前人所得之和與后人所得之和相等,問(wèn)各得多少錢?”,則第人得錢數(shù)為()A.錢 B.錢C.錢 D.錢12.已知雙曲線的左、右焦點(diǎn)分別為,,過(guò)作圓的切線分別交雙曲線的左、右兩支于,,且,則雙曲線的漸近線方程為()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.如圖:雙曲線的左右焦點(diǎn)分別為,,過(guò)原點(diǎn)O的直線與雙曲線C相交于P,Q兩點(diǎn),其中P在右支上,且,則的面積為_(kāi)__________.14.已知是雙曲線的左、右焦點(diǎn),若為雙曲線上一點(diǎn),且,則__________.15.已知直線在兩坐標(biāo)軸上的截距分別為,,則__________.16.如圖,正四棱錐的棱長(zhǎng)均為2,點(diǎn)E為側(cè)棱PD的中點(diǎn).若點(diǎn)M,N分別為直線AB,CE上的動(dòng)點(diǎn),則MN的最小值為_(kāi)_____三、解答題:共70分。解答應(yīng)寫出文字說(shuō)明、證明過(guò)程或演算步驟。17.(12分)已知函數(shù)在處有極值.(1)求常數(shù)a,b的值;(2)求函數(shù)在上的最值.18.(12分)如圖,在梯形中,,,平面,四邊形為矩形,點(diǎn)為線段的中點(diǎn),且(1)求證:平面平面;(2)若平面與平面所成銳二面角的余弦值為,則三棱錐F-ABC的體積為多少?19.(12分)在如圖所示的幾何體中,四邊形是正方形,四邊形是梯形,,,平面平面,且(1)求證:平面;(2)求平面與平面夾角的余弦值20.(12分)在平面直角坐標(biāo)系中,已知點(diǎn),軸于點(diǎn),是線段上的動(dòng)點(diǎn),軸于點(diǎn),于點(diǎn),與相交于點(diǎn).(1)判斷點(diǎn)是否在拋物線上,并說(shuō)明理由;(2)過(guò)點(diǎn)作拋物線的切線交軸于點(diǎn),過(guò)拋物線上的點(diǎn)作拋物線的切線交軸于點(diǎn),……,以此類推,得到數(shù)列,求,及數(shù)列的通項(xiàng)公式.21.(12分)已知橢圓:,的左右焦點(diǎn),是雙曲線的左右頂點(diǎn),的離心率為,的離心率為,點(diǎn)在上,過(guò)點(diǎn)E和,分別作直線交橢圓于,和,點(diǎn),如圖.(1)求,的方程;(2)求證:直線和的斜率之積為定值;(3)求證:為定值.22.(10分)已知等差數(shù)列滿足,,的前項(xiàng)和為.(1)求及;(2)令,求數(shù)列的前項(xiàng)和.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、A【解析】考點(diǎn):直線的傾斜角專題:計(jì)算題分析:因?yàn)橹本€的斜率是傾斜角的正切值,所以欲求直線的傾斜角,只需求出直線的斜率即可,把直線化為斜截式,可得斜率,問(wèn)題得解解答:解:∵x-y+1=0可化為y=x+,∴斜率k=設(shè)傾斜角為θ,則tanθ=k=,θ∈[0,π)∴θ=故選A點(diǎn)評(píng):本題主要考查了直線的傾斜角與斜率之間的關(guān)系,屬于直線方程的基礎(chǔ)題型,需要學(xué)生對(duì)基礎(chǔ)知識(shí)熟練掌握2、A【解析】?jī)芍本€垂直,斜率之積為,曲線與直線相切,聯(lián)立方程令.【詳解】法一:直線,所以,所以切線的,設(shè)切線的方程為,聯(lián)立方程,所以,令,解得,所以切線方程為.法二:直線,所以,所以切線的,,所以令,所以,帶入曲線方程得切點(diǎn)坐標(biāo)為,所以切線方程為,化簡(jiǎn)得.故選:A.3、A【解析】結(jié)合橢圓的定義、勾股定理列方程,化簡(jiǎn)求得,由此求得離心率.【詳解】圓的圓心為,半徑為.設(shè)左焦點(diǎn)為,連接,由于,所以,所以,所以,由于,所以,所以,,.故選:A4、C【解析】根據(jù)等比數(shù)列的定義,利用等比數(shù)列的通項(xiàng)公式求解【詳解】解:設(shè)該等比數(shù)列公比為q,∵數(shù)列1,a,b,c,9是等比數(shù)列,∴,,∴,故,解得,∴故選:C5、A【解析】根據(jù)直線垂直求出的范圍即可得出.【詳解】由直線垂直可得,解得或1,所以“”是“直線與直線互相垂直”的充分不必要條件.故選:A.6、D【解析】對(duì)于A:可以解決;對(duì)于B:“一個(gè)三角形至少由兩個(gè)銳角”的反面是“只有一個(gè)銳角或沒(méi)有銳角”;對(duì)于C:全稱否定必須是全部否定;對(duì)于D:需要觀察出所給直線是過(guò)定點(diǎn)的.【詳解】A:,故錯(cuò)誤;B:“一個(gè)三角形至少由兩個(gè)銳角”的反面是“只有一個(gè)銳角或沒(méi)有銳角”,所以用反證法時(shí)應(yīng)假設(shè)只有一個(gè)銳角和沒(méi)有銳角兩種情況,故錯(cuò)誤;C:的否定形式是,故錯(cuò)誤;D:直線是過(guò)定點(diǎn)(-1,0),而圓,圓心為(2,0),半徑為4,定點(diǎn)(-1,0)到圓心的距離為2-(-1)=3<4,故定點(diǎn)在圓內(nèi),故正確;故選:D.7、D【解析】由題意結(jié)合導(dǎo)數(shù)的運(yùn)算可得,再由導(dǎo)數(shù)的概念即可得解.【詳解】由題意,所以,所以.故選:D.8、D【解析】根據(jù)垂直關(guān)系可得,由向量坐標(biāo)運(yùn)算可構(gòu)造方程求得結(jié)果.【詳解】,,又與互相垂直,,解得:.故選:D.9、C【解析】利用幾何概型的長(zhǎng)度比值,即可計(jì)算.【詳解】設(shè)直角邊長(zhǎng),斜邊,則線段的長(zhǎng)度大于的長(zhǎng)度的概率.故選:C10、D【解析】利用基本不等式“1”的妙用求最值.【詳解】因?yàn)閍,b為正實(shí)數(shù),且,所以.當(dāng)且僅當(dāng),即時(shí)取等號(hào).故選:D11、A【解析】設(shè)第所得錢數(shù)為錢,設(shè)數(shù)列、、、、的公差為,根據(jù)已知條件可得出關(guān)于、的值,即可求得的值.【詳解】設(shè)第所得錢數(shù)為錢,則數(shù)列、、、、為等差數(shù)列,設(shè)數(shù)列、、、、公差為,則,解得,故.故選:A.12、D【解析】直線的斜率為,計(jì)算,,利用余弦定理得到,化簡(jiǎn)知,得到答案【詳解】由題意知直線的斜率為,,又,由雙曲線定義知,,.由余弦定理:,,即,即,解得.故雙曲線漸近線的方程為.故答案選D【點(diǎn)睛】本題考查了雙曲線的漸近線,與圓的關(guān)系,意在考查學(xué)生的綜合應(yīng)用能力和計(jì)算能力.二、填空題:本題共4小題,每小題5分,共20分。13、24【解析】利用雙曲線定義結(jié)合已知求出,,再利用雙曲線的對(duì)稱性計(jì)算作答.【詳解】依題意,,,又,解得,,則有,即,連接,如圖,因過(guò)原點(diǎn)O的直線與雙曲線C相交于P,Q兩點(diǎn),由雙曲線的對(duì)稱性知,P,Q關(guān)于原點(diǎn)O對(duì)稱,因此,四邊形是平行四邊形,,所以的面積為24.故答案為:2414、17【解析】根據(jù)雙曲線的定義求解【詳解】由雙曲線方程知,,,又.,所以(1舍去)故答案為:1715、##【解析】根據(jù)截距定義,分別令,可得.【詳解】由直線,令得,即令,得,即,故.故答案為:16、【解析】根據(jù)題意,先建立空間直角坐標(biāo)系,然后寫出相關(guān)點(diǎn)的坐標(biāo),再寫出相關(guān)的向量,然后根據(jù)點(diǎn)分別為直線上寫出點(diǎn)的坐標(biāo),這樣就得到,然后根據(jù)的取值范圍而確定【詳解】建立如圖所示的空間直角坐標(biāo)系,則有:,,,,,可得:設(shè),且則有:,可得:則有:故則當(dāng)且僅當(dāng)時(shí),故答案為:三、解答題:共70分。解答應(yīng)寫出文字說(shuō)明、證明過(guò)程或演算步驟。17、(1);(2)最大值為-1,最值為-5.【解析】(1)根據(jù)給定條件結(jié)合函數(shù)的導(dǎo)數(shù)建立方程,求解方程并驗(yàn)證作答.(2)利用導(dǎo)數(shù)探討函數(shù)在上的單調(diào)性即可計(jì)算作答.【小問(wèn)1詳解】依題意:,則,解得:,當(dāng)時(shí),,當(dāng)時(shí),,當(dāng)時(shí),,則函數(shù)在處有極值,所以.【小問(wèn)2詳解】由(1)知:,,,當(dāng)時(shí),,當(dāng)時(shí),,因此,在上單調(diào)遞增,在上單調(diào)遞減,于是得,而,,則,所以函數(shù)在上的最大值為-1,最值為-5.18、(1)證明見(jiàn)解析;(2)【解析】(1)先證線面垂直,再證面面垂直即可解決;(2)建立空間直角坐標(biāo)系,以向量法去求平面與平面所成銳二面角的余弦值,列方程解得的長(zhǎng)度,即可求得三棱錐F-ABC的體積.【小問(wèn)1詳解】在梯形中,,,,所以,,又,所以,所以,又所以,即又平面,平面,所以,又,,平面,所以平面,即平面又平面,則平面平面【小問(wèn)2詳解】由(1)知,,兩兩垂直,以為坐標(biāo)原點(diǎn),分別以直線,,為軸、軸、軸建立空間直角坐標(biāo)系因?yàn)?,,所以,令則,,,所以,設(shè)為平面的一個(gè)法向量,由,得解得,取,則,又是平面的一個(gè)法向量.設(shè)平面與平面所成銳二面角為,則,即解之得,又,故即19、(1)證明見(jiàn)解析(2)【解析】(1)先利用正方形和梯形的性質(zhì)證明線面平行,然后再根據(jù)線面平行證明面面平行即可(2)根據(jù)題意建立空間直角坐標(biāo)系,寫出相關(guān)點(diǎn)的坐標(biāo)和相關(guān)的向量,然后分別求出平面與平面的一個(gè)法向量,最后求出平面與平面夾角的余弦值【小問(wèn)1詳解】四邊形是正方形,可得:又平面,平面則有:平面四邊形是梯形,可得:又平面,平面則有:平面又故平面平面【小問(wèn)2詳解】依題意知兩兩垂直,故以為原點(diǎn),所在的直線分別為軸、軸、軸,建立如圖所示的空間直角坐標(biāo)系.則有:,,,可得:,,設(shè)平面的一個(gè)法向量,則有:取,可得:設(shè)平面的一個(gè)法向量,則有:取,可得:設(shè)平面與平面的夾角為,則故平面與平面夾角的余弦值為20、(1)在拋物線上,理由見(jiàn)解析(2),,.【解析】(1)根據(jù)直線的方程設(shè)出點(diǎn)的坐標(biāo),利用已知條件求出點(diǎn)的坐標(biāo)即可判斷點(diǎn)是否在拋物線上;(2)設(shè)出直線的直線方程,與拋物線聯(lián)立,令,即可求出,同理可以求出,設(shè)出直線的直線方程,與拋物線聯(lián)立,令即可求出的方程,若令,,即,故數(shù)列是首項(xiàng),公比為的等比數(shù)列,即可求出數(shù)列的通項(xiàng)公式.【小問(wèn)1詳解】由已知條件得直線的方程為,設(shè)點(diǎn),則,由直線的方程為可得點(diǎn)的坐標(biāo)為,點(diǎn)滿足拋物線,則點(diǎn)是否在拋物線上;【小問(wèn)2詳解】設(shè)的直線方程為,將直線與拋物線聯(lián)立得,,解得,的直線方程為,則,即,由此可知,設(shè)的直線方程為,將直線與拋物線聯(lián)立得,,解得,的直線方程為,則,即,由此可知設(shè)點(diǎn),設(shè)直線方程為,將直線與拋物線聯(lián)立得,,其中,即,,解得,直線的方程為,即,令得,即直線過(guò)點(diǎn),則直線的斜率為,直線的方程也可以表示為,即,令,,即,則,即數(shù)列是首項(xiàng),公比為的等比數(shù)列,故.21、(1):;:(2)證明見(jiàn)解析(3)證明見(jiàn)解析【解析】(1)利用待定系數(shù)法,根據(jù)條件先求曲線的方程,再求曲線的方程;(2)首先設(shè),表示直線和的斜率之積,即可求解定值;(3)首先表示直線與方程聯(lián)立消,利用韋達(dá)定理表示弦長(zhǎng),以及利用直線和的斜率關(guān)系,表示弦長(zhǎng),并證明為定值.【小問(wèn)1詳解】由題設(shè)知,橢圓離心率為解得∴,∵橢圓的左右焦點(diǎn),是雙曲線的左右頂點(diǎn),∴設(shè)雙曲線:∴的離心率為解得.∴::;【小問(wèn)2詳解】證明:∵點(diǎn)在上∴設(shè)則,∴.∴直線和的斜率之積為定值1;【小問(wèn)3詳解】證明:設(shè)直線和的斜率分別為,,則設(shè),:與方程聯(lián)立消得“*”則,是“*”的二根則則同理∴.22、(1),;(2).【解析】

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論