廣東省珠海一中、惠州一中2026屆高二上數(shù)學(xué)期末經(jīng)典模擬試題含解析_第1頁
廣東省珠海一中、惠州一中2026屆高二上數(shù)學(xué)期末經(jīng)典模擬試題含解析_第2頁
廣東省珠海一中、惠州一中2026屆高二上數(shù)學(xué)期末經(jīng)典模擬試題含解析_第3頁
廣東省珠海一中、惠州一中2026屆高二上數(shù)學(xué)期末經(jīng)典模擬試題含解析_第4頁
廣東省珠海一中、惠州一中2026屆高二上數(shù)學(xué)期末經(jīng)典模擬試題含解析_第5頁
已閱讀5頁,還剩13頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)

文檔簡介

廣東省珠海一中、惠州一中2026屆高二上數(shù)學(xué)期末經(jīng)典模擬試題考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應(yīng)位置上。2.請用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準(zhǔn)考證號。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無效。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.下列關(guān)于命題的說法錯誤的是A.命題“若,則”的逆否命題為“若,則”B.“”是“函數(shù)在區(qū)間上為增函數(shù)”的充分不必要條件C.命題“,使得”的否定是“,均有”D.“若為的極值點(diǎn),則”的逆命題為真命題2.試在拋物線上求一點(diǎn),使其到焦點(diǎn)的距離與到的距離之和最小,則該點(diǎn)坐標(biāo)為A. B.C. D.3.拋物線的準(zhǔn)線方程為,則實(shí)數(shù)的值為()A. B.C. D.4.已知三角形三個頂點(diǎn)為、、,則邊上的高所在直線的方程為()A. B.C. D.5.執(zhí)行如圖所示的程序框圖,若輸入的的值為3,則輸出的的值為()A.3 B.6C.9 D.126.已知點(diǎn)F為拋物線C:的焦點(diǎn),點(diǎn),若點(diǎn)Р為拋物線C上的動點(diǎn),當(dāng)取得最大值時,點(diǎn)P恰好在以F,為焦點(diǎn)的橢圓上,則該橢圓的離心率為()A. B.C. D.7.已知橢圓和雙曲線有共同焦點(diǎn),是它們一個交點(diǎn),且,記橢圓和雙曲線的離心率分別為,則的最大值為A.3 B.2C. D.8.已知直線過拋物線C的焦點(diǎn),且與C的對稱軸垂直,與C交于A,B兩點(diǎn),P為C的準(zhǔn)線上一點(diǎn),若的面積為36,則等于()A.36 B.24C.12 D.69.五行學(xué)說是中華民族創(chuàng)造的哲學(xué)思想.古代先民認(rèn)為,天下萬物皆由五種元素組成,分別是金、木、水、火、土,彼此之間存在如圖所示的相生相克關(guān)系.若從金、木、水、火、土五種元素中任取兩種,則這兩種元素恰是相生關(guān)系的概率是()A. B.C. D.10.已知雙曲線的離心率為2,則C的漸近線方程為()A. B.C. D.11.已知數(shù)列滿足:且,則此數(shù)列的前20項的和為()A.621 B.622C.1133 D.113412.展開式中第3項的二項式系數(shù)為()A.6 B.C.24 D.二、填空題:本題共4小題,每小題5分,共20分。13.已知函數(shù),則的值是______.14.已知拋物線的焦點(diǎn)為F,O為坐標(biāo)原點(diǎn),M的準(zhǔn)線為l且與x軸相交于點(diǎn)B,A為M上的一點(diǎn),直線AO與直線l相交于C點(diǎn),若,,則M的標(biāo)準(zhǔn)方程為______________.15.千年一遇對稱日,萬事圓滿在今朝,年月日又是一個難得的“世界完全對稱日”(公歷紀(jì)年日期中數(shù)字左右完全對稱的日期).數(shù)學(xué)上把這樣的對稱自然數(shù)叫回文數(shù),兩位數(shù)的回文數(shù)共有個(),其中末位是奇數(shù)的又叫做回文奇數(shù),則在內(nèi)的回文奇數(shù)的個數(shù)為___16.在棱長為2的正方體中,點(diǎn)P是直線上的一個動點(diǎn),點(diǎn)Q在平面上,則的最小值為________.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知橢圓的中心在原點(diǎn),焦點(diǎn)為,,且長軸長為4.(1)求橢圓的方程;(2)直線與橢圓相交于A,兩點(diǎn),求弦長.18.(12分)已知三角形的三個頂點(diǎn)是,,(1)求邊上的中線所在直線的方程;(2)求邊上的高所在直線的方程19.(12分)已知函數(shù)(1)若在上單調(diào)遞減,求實(shí)數(shù)a的取值范圍(2)若是方程的兩個不相等的實(shí)數(shù)根,證明:20.(12分)已知,是函數(shù)的兩個極值點(diǎn).(1)求的解析式;(2)記,,若函數(shù)有三個零點(diǎn),求的取值范圍.21.(12分)已知三點(diǎn)共線,其中是數(shù)列中的第n項.(1)求數(shù)列的通項;(2)設(shè),求數(shù)列的前n項和.22.(10分)已知函數(shù),.(1)令,求函數(shù)的零點(diǎn);(2)令,求函數(shù)的最小值.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、D【解析】根據(jù)命題及其關(guān)系、充分條件與必要條件、導(dǎo)數(shù)在函數(shù)中應(yīng)用、全稱量詞與存在量詞等相關(guān)知識一一判斷可得答案.【詳解】解:A,由原命題與逆否命題的構(gòu)成關(guān)系,可知A正確;B,當(dāng)a=2>1時,函數(shù)在定義域內(nèi)是單調(diào)遞增函數(shù),當(dāng)函數(shù)定義域內(nèi)是單調(diào)遞增函數(shù)時,a>1.所以B正確;C,由于存在性命題的否定是全稱命題,所以",使得"的否定是",均有,所以C正確;D,的根不一定是極值點(diǎn),例如:函數(shù),則=0,即x=0就不是極值點(diǎn),所以“若為的極值點(diǎn),則”的逆命題為假命題,故選D.【點(diǎn)睛】本題主要考查命題及其關(guān)系、充分條件與必要條件、導(dǎo)數(shù)在函數(shù)中應(yīng)用、全稱量詞與存在量詞等相關(guān)知識,需牢記并靈活運(yùn)用相關(guān)知識.2、A【解析】由題意得拋物線的焦點(diǎn)為,準(zhǔn)線方程為過點(diǎn)P作于點(diǎn),由定義可得,所以,由圖形可得,當(dāng)三點(diǎn)共線時,最小,此時故點(diǎn)的縱坐標(biāo)為1,所以橫坐標(biāo).即點(diǎn)P的坐標(biāo)為.選A點(diǎn)睛:與拋物線有關(guān)的最值問題的解題策略該類問題一般解法是利用拋物線的定義,實(shí)現(xiàn)由點(diǎn)到點(diǎn)的距離與點(diǎn)到直線的距離的轉(zhuǎn)化(1)將拋物線上的點(diǎn)到準(zhǔn)線的距離轉(zhuǎn)化為該點(diǎn)到焦點(diǎn)的距離,構(gòu)造出“兩點(diǎn)之間線段最短”,使問題得解;(2)將拋物線上的點(diǎn)到焦點(diǎn)的距離轉(zhuǎn)化為點(diǎn)到準(zhǔn)線的距離,利用“與直線上所有點(diǎn)的連線中的垂線段最短”解決3、B【解析】由題得,解方程即得解.【詳解】解:拋物線的準(zhǔn)線方程為,所以.故選:B4、A【解析】求出直線的斜率,可求得邊上的高所在直線的斜率,利用點(diǎn)斜式可得出所求直線的方程.【詳解】直線的斜率為,故邊上的高所在直線的斜率為,因此,邊上的高所在直線的方程為.故選:A.5、A【解析】模擬執(zhí)行程序框圖,根據(jù)輸入數(shù)據(jù),即可求得輸出數(shù)據(jù).【詳解】當(dāng)時,不滿足,故,即輸出的的值為.故選:.6、D【解析】過點(diǎn)P引拋物線準(zhǔn)線的垂線,交準(zhǔn)線于D,根據(jù)拋物線的定義可知,記,根據(jù)題意,當(dāng)最小,即直線與拋物線相切時滿足題意,進(jìn)而解出此時P的坐標(biāo),解得答案即可.【詳解】如圖,易知點(diǎn)在拋物線C的準(zhǔn)線上,作PD垂直于準(zhǔn)線,且與準(zhǔn)線交于點(diǎn)D,記,則.由拋物線定義可知,.由圖可知,當(dāng)取得最大值時,最小,此時直線與拋物線相切,設(shè)切線方程為,代入拋物線方程并化簡得:,,方程化為:,代入拋物線方程解得:,即,則,.于是,橢圓的長軸長,半焦距,所以橢圓的離心率.故選:D.7、D【解析】設(shè)橢圓長半軸長為a1,雙曲線的半實(shí)軸長a2,焦距2c.根據(jù)橢圓及雙曲線的定義可以用a1,a2表示出|PF1|,|PF2|,在△F1PF2中根據(jù)余弦定理可得到,利用基本不等式可得結(jié)論【詳解】如圖,設(shè)橢圓的長半軸長為a1,雙曲線的半實(shí)軸長為a2,則根據(jù)橢圓及雙曲線的定義:|PF1|+|PF2|=2a1,|PF1|﹣|PF2|=2a2,∴|PF1|=a1+a2,|PF2|=a1﹣a2,設(shè)|F1F2|=2c,∠F1PF2=,則:在△PF1F2中,由余弦定理得,4c2=(a1+a2)2+(a1﹣a2)2﹣2(a1+a2)(a1﹣a2)cos∴化簡得:a12+3a22=4c2,該式可變成:,∴≥2∴,故選D【點(diǎn)睛】本題考查圓錐曲線的共同特征,考查通過橢圓與雙曲線的定義求焦點(diǎn)三角形三邊長,考查利用基本不等式求最值問題,屬于中檔題8、C【解析】設(shè)拋物線方程為,根據(jù)題意由求解.【詳解】設(shè)拋物線方程為:,因?yàn)橹本€過拋物線C的焦點(diǎn),且與C的對稱軸垂直,所以,又P為C的準(zhǔn)線上一點(diǎn),所以點(diǎn)P到直線AB的距離為p,所以,解得,所以,故選:C9、C【解析】先計算從金、木、水、火、土五種元素中任取兩種的所有基本事件數(shù),再計算其中兩種元素恰是相生關(guān)系的基本事件數(shù),利用古典概型概率公式,即得解【詳解】由題意,從金、木、水、火、土五種元素中任取兩種,共有(金,木),(金,水),(金,火),(金,土),(木,水),(木,火),(木土),(水,火),(水,土),(火,土),共10個基本事件,其中兩種元素恰是相生關(guān)系包含(金,木),(木,土),(土,水),(水,火)(火,金)共5個基本事件,所以所求概率.故選:C10、A【解析】根據(jù)離心率及a,b,c的關(guān)系,可求得,代入即可得答案.【詳解】因?yàn)殡x心率,所以,所以,,則,所以C的漸近線方程為.故選:A11、C【解析】這個數(shù)列的奇數(shù)項是公差為2的等差數(shù)列,偶數(shù)項是公比為2的等比數(shù)列,只要分開來計算即可.【詳解】由于,所以當(dāng)n為奇數(shù)時,是等差數(shù)列,即:共10項,和為;,共10項,其和為;∴該數(shù)列前20項的和;故選:C.12、A【解析】根據(jù)二項展開式的通項公式,即可求解.【詳解】由題意,二項式展開式中第3項,所以展開式中第3項的二項式系數(shù)為.故選:A.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】求出,代值計算可得的值.【詳解】因?yàn)?,則,因此,.故答案為:.14、【解析】先利用相似關(guān)系計算,求得直線OA的方程,再聯(lián)立方程求得,利用拋物線定義根據(jù)即得p值,即得結(jié)果.【詳解】因?yàn)椋?,所以,則,如圖,,故,解得,所以,直線OA的斜率為,OA的方程,聯(lián)立直線OA與拋物線方程,解得,所以,故,則拋物線標(biāo)準(zhǔn)方程為.故答案為:.15、【解析】根據(jù)分類加法計數(shù)原理,結(jié)合題中定義、組合的定義進(jìn)行求解即可.【詳解】兩位數(shù)的回文奇數(shù)有,共個,三位數(shù)的回文奇數(shù)有,四位數(shù)的回文奇數(shù)有,所以在內(nèi)的回文奇數(shù)的個數(shù)為,故答案為:16、【解析】數(shù)形結(jié)合分析出的最小值為點(diǎn)到平面的距離,然后利用等體積法求出距離即可.【詳解】因?yàn)椋移矫?,平面,所以平面,所以的最小值為點(diǎn)到平面的距離,設(shè)到平面的距離為,則,所以,即,解得,故答案為:.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)(2)【解析】(1)由已知直接可得;(2)聯(lián)立方程組求出A,兩點(diǎn)坐標(biāo),再由兩點(diǎn)間距離公式可得.【小問1詳解】∵橢圓的中心在原點(diǎn),焦點(diǎn)為,且長軸長為4,,,,故橢圓的方程為;【小問2詳解】設(shè),聯(lián)立解得和,,∴弦長.18、(1);(2)【解析】(1)先求出BC的中點(diǎn)坐標(biāo),再利用兩點(diǎn)式求出直線的方程;(2)先求出BC邊上的高所在直線的斜率,再利用點(diǎn)斜式求出直線的方程.【詳解】(1)設(shè)線段的中點(diǎn)為因?yàn)?,,所以的中點(diǎn),所以邊上的中線所在直線的方程為,即(2)因?yàn)?,,所以邊所在直線的斜率,所以邊上的高所在直線的斜率為,所以邊上的高所在直線的方程為,即【點(diǎn)睛】本題主要考查直線方程的求法,屬于基礎(chǔ)題.19、(1);(2)詳見解析【解析】(1)首先求函數(shù)的導(dǎo)數(shù),結(jié)合函數(shù)的導(dǎo)數(shù)與函數(shù)單調(diào)性的關(guān)系,參變分離后,轉(zhuǎn)化為求函數(shù)的最值,即可求得實(shí)數(shù)的取值范圍;(2)將方程的實(shí)數(shù)根代入方程,再變形得到,利用分析法,轉(zhuǎn)化為證明,通過換元,構(gòu)造函數(shù),轉(zhuǎn)化為利用導(dǎo)數(shù)證明,恒成立.【小問1詳解】,,在上單調(diào)遞減,在上恒成立,即,即在,設(shè),,,當(dāng)時,,函數(shù)單調(diào)遞增,當(dāng)時,,函數(shù)單調(diào)遞減,所以函數(shù)的最大值是,所以;【小問2詳解】若是方程兩個不相等的實(shí)數(shù)根,即又2個不同實(shí)數(shù)根,且,,得,即,所以,不妨設(shè),則,要證明,只需證明,即證明,即證明,令,,令函數(shù),所以,所以函數(shù)在上單調(diào)遞減,當(dāng)時,,所以,,所以,即,即得【點(diǎn)睛】本題考查利用導(dǎo)數(shù)的單調(diào)性求參數(shù)的取值范圍,以及證明不等式,屬于難題,導(dǎo)數(shù)中的雙變量問題,往往采用分析法,轉(zhuǎn)化為函數(shù)與不等式的關(guān)系,通過構(gòu)造函數(shù),結(jié)合函數(shù)的導(dǎo)數(shù),即可證明.20、(1);(2)【解析】(1)根據(jù)極值點(diǎn)的定義,可知方程的兩個解即為,,代入即得結(jié)果;(2)根據(jù)題意,將方程轉(zhuǎn)化為,則函數(shù)與直線在區(qū)間,上有三個交點(diǎn),進(jìn)而求解的取值范圍【詳解】解:(1)因?yàn)?,所以根?jù)極值點(diǎn)定義,方程的兩個根即為,,,代入,,可得,解之可得,,故有;(2)根據(jù)題意,,,,根據(jù)題意,可得方程在區(qū)間,內(nèi)有三個實(shí)數(shù)根,即函數(shù)與直線在區(qū)間,內(nèi)有三個交點(diǎn),又因?yàn)?,則令,解得;令,解得或,所以函數(shù)在,上單調(diào)遞減,在上單調(diào)遞增;又因?yàn)椋?,,,函?shù)圖象如下所示:若使函數(shù)與直線有三個交點(diǎn),則需使,即21、(1)(2)【解析】(1)由三點(diǎn)共線可知斜率相等,即可得出答案;(2)由題可得,利用錯位相減法即可求出答案.【小問1詳解】三點(diǎn)共線,【小問2詳解】①②①—②得22、(1)答案見解析(2)答案見解析【解析】(1)函數(shù)零點(diǎn)的個數(shù),就是方程的解的個數(shù),顯然是方程的一個解,再對a分類討論,即得函數(shù)的零點(diǎn);(2)令,可得,得,再對二次函數(shù)的對稱軸分三種情況討論得解.【詳解】(1)由,可知函數(shù)零點(diǎn)的個數(shù),就是方程的解的個數(shù),顯然

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論