版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
1、導數(shù)的基本公式與運算法則,基本初等函數(shù)的導數(shù)公式,(x ) = x -1 .,(ax) = ax lna .,(ex) = ex.,(sin x) = cos x.,(cos x) = - sin x.,(tan x) = sec2x .,(cot x) = - csc2x .,(sec x) = sec x tan x .,(csc x) = - csc x cot x .,另外還有反三角函數(shù)的導數(shù)公式:,定理2. 1 設函數(shù) u(x)、v(x) 在 x 處可導,,在 x 處也可導,,(u(x) v(x) = u(x) v (x);,(u(x)v(x) = u(x)v(x) + u(x)v(
2、x);,導數(shù)的四則運算,且,則它們的和、差、積與商,推論 1 (cu(x) = cu(x) (c 為常數(shù)).,推論 2,乘法法則的推廣:,補充例題: 求下列函數(shù)的導數(shù):,解 根據(jù)推論 1 可得 (3x4) = 3(x4),,(5cos x) = 5(cos x),,(cos x) = - sin x,,(ex) = ex,,(1) = 0,,故,f (x) = (3x4 - ex + 5cos x - 1) ,= (3x4) -(ex ) + (5cos x) - (1),= 12x3 - ex - 5sin x .,f (0) = (12x3 - ex - 5sin x)|x=0 = - 1
3、,又(x4) = 4x3,,例 1 設 f (x) = 3x4 ex + 5cos x - 1,求 f (x) 及 f (0).,例 2 設 y = xlnx ,,求 y .,解 根據(jù)乘法公式,有,y = (xlnx),= x (lnx) + (x)lnx,解 根據(jù)除法公式,有,教材P32 例2 求下列函數(shù)的導數(shù):,解:,高階導數(shù),如果可以對函數(shù) f(x) 的導函數(shù) f (x) 再求導,,所得到的一個新函數(shù),,稱為函數(shù) y = f(x) 的二階導數(shù),,記作 f (x) 或 y 或,如對二階導數(shù)再求導,則稱三階導數(shù),,記作 f (x) 或,四階或四階以上導數(shù)記為 y(4),y(5), ,y(n)
4、,或 ,,而把 f (x) 稱為 f (x) 的一階導數(shù).,例3 求下列函數(shù)的二階導數(shù),解:,二階以上的導數(shù)可利用后面的數(shù)學軟件來計算,推論 設 y = f (u) , u = (v), v = (x) 均可導,則復合函數(shù) y = f ( (x) 也可導,,以上法則說明:復合函數(shù)對自變量的導數(shù)等于復合 函數(shù)對中間變量的導數(shù)乘以中間變量對自變量的導數(shù).,先將要求導的函數(shù)分解成基本初等函數(shù),或常數(shù)與基本初等函數(shù)的和、差、積、商.,任何初等函數(shù)的導數(shù)都可以按常數(shù)和基本初等函數(shù)的求導公式和上述復合函數(shù)的求導法則求出.,復合函數(shù)求導的關鍵: 正確分解初等函數(shù)的復合結構.,求導方法小結:,例5:求下列函數(shù)
5、的導數(shù),(1) (2) (3) (4),二元函數(shù)的偏導數(shù)的求法,求 對自變量 (或 )的偏導數(shù)時,只須將另一自變量 (或 )看作常數(shù),直接利用一元函數(shù)求導公式和四則運算法則進行計算.,例1 設函數(shù),求,解:,例2 設函數(shù),解:,類似可得,二元函數(shù)的二階偏導數(shù),函數(shù) z = f ( x , y ) 的兩個偏導數(shù),一般說來仍然是 x , y 的函數(shù),,如果這兩個函數(shù)關于 x , y 的偏導數(shù)也存在,,則稱它們的偏導數(shù)是 f (x , y)的二階偏導數(shù).,依照對變量的不同求導次序,,二階偏導數(shù)有四個:(用符號表示如下),其中 及 稱為二階混合偏導數(shù).,類似的,可以定義三階、四階、 、n 階偏導數(shù),,二階及二階以上的偏導數(shù)稱為高階偏導數(shù),,稱為函數(shù) f ( x , y ) 的一階偏導數(shù).,注:當兩
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 硝酸生產工崗后強化考核試卷含答案
- 塔盤制煉工操作評估測試考核試卷含答案
- 生活垃圾堆肥操作工安全文明模擬考核試卷含答案
- 電工崗前技術應用考核試卷含答案
- 煉鋼準備工安全技能考核試卷含答案
- 花卉園藝工崗前核心實操考核試卷含答案
- 膠帶機移設機司機創(chuàng)新應用考核試卷含答案
- 下料工安全操作知識考核試卷含答案
- 真空電子器件化學零件制造工班組評比模擬考核試卷含答案
- 感光材料乳劑熔化工創(chuàng)新意識水平考核試卷含答案
- 2026年教育平臺資源輸出協(xié)議
- 【《四旋翼飛行器坐標系及相互轉換關系分析綜述》1000字】
- 廣東深圳市鹽田高級中學2024~2025學年高一上冊1月期末考試化學試題 附答案
- 人力資源部2025年度工作總結與2026年度戰(zhàn)略規(guī)劃
- 2025年安徽理工大學馬克思主義基本原理概論期末考試參考題庫
- 機械工程師職稱評定技術報告模板
- 檔案移交數(shù)字化建設規(guī)劃
- 孤獨癥個案護理
- 建筑施工風險辨識與防范措施
- 高職汽車維修專業(yè)培訓教材
- 2026年中級注冊安全工程師之安全生產法及相關法律知識考試題庫500道含答案ab卷
評論
0/150
提交評論