10(7)高數(shù).ppt_第1頁
10(7)高數(shù).ppt_第2頁
10(7)高數(shù).ppt_第3頁
10(7)高數(shù).ppt_第4頁
10(7)高數(shù).ppt_第5頁
已閱讀5頁,還剩21頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

1、1,第七節(jié) 斯托克斯(stokes)公式 環(huán)流量與旋度,斯托克斯公式,物理意義-環(huán)流量與旋度,小結(jié) 思考題 作業(yè),circulation,curl,第十章 曲線積分與曲面積分,2,本節(jié)介紹空間曲面積分與曲線積分,并同時介紹向量場的兩個重要概念,斯托克斯公式.,環(huán)量與旋度.,之間的關(guān)系,3,一、斯托克斯(Stokes)公式,斯托克斯公式,定理,為分段光滑的空間有向閉曲線,是以,為邊界的分片光滑的有向閉曲面,具有一階連續(xù)偏導數(shù),則有公式,4,即有,其中,方向余弦.,是指定一側(cè)的法向量,5,的正向與的側(cè)符合右手規(guī)則:,當右手除拇指外的四指依 的繞行方向時,是有向曲面 的 正向邊界曲線,右手法則,拇指

2、所指的方向與上法向量的指向相同.,是有向曲面的正向邊界曲線.,稱,6,(3) 在坐標面上,應用格林公式把(2)得到的平面閉曲線積分化為二重積分.,因此斯托克斯公式是格林,證明思路,(1) 把曲面積分化為坐標面上投影域的二重積分;,(2) 把空間閉曲線上的曲線積分化為坐標面上的閉曲線積分;,分三步,當為 xOy 坐標面上的平面區(qū)域時,斯托克,斯公式就是格林公式,公式在曲面上的推廣.,7,另一種形式,便于記憶形式,8,Stokes公式的實質(zhì),表達了有向曲面上的曲面積分與其,邊界曲線上的曲線積分之間的關(guān)系.,9,解,法一,按斯托克斯公式,計算曲線積分,例,其中,被三坐標面所截成的,三角形的整個邊界,

3、它的正向與這個三角形上側(cè),的法向量之間符合右手規(guī)則.,有,10,對稱性,11,按斯托克斯公式,法二,有,12,解,則,計算曲線積分,例,其中,截立方體:,的表面所得的截痕,若從Ox,軸的正向看去,取逆時針方向.,取為平面,的上側(cè)被所圍成的部分.,在xOy面上的投影為,13,即,14,1.環(huán)流量的定義,circulation,curl,環(huán)流量.,二、物理意義-環(huán)流量與旋度,設向量場,15,利用Stokes公式,環(huán)流量,16,2. 旋度的定義,17,解,例,18,斯托克斯公式的又一種形式,其中,19,斯托克斯公式的向量形式,其中,20,Stokes公式的物理解釋,環(huán)流量,旋度為零向量的向量場稱為無

4、旋場或有勢場或保守場.,無源且無旋的場稱為調(diào)和場.,21,斯托克斯Stokes公式,斯托克斯公式的物理意義環(huán)流量與旋度,三、小結(jié),Stokes公式的實質(zhì),表達了有向曲面上的曲面積分與其,邊界曲線上的曲線積分之間的關(guān)系.,(注意使用的條件),22,計算 其中,是球面,(1) 用對面積的曲面積分;,(2) 用對坐標的曲面積分;,(3) 用高斯公式;,(4) 用斯托克斯公式.,的上半部上側(cè),是它的邊界.,思考題,23,解答,(1) 原式=,24,(2)原式=,(3) 補平面,原式=,方向朝下,與構(gòu)成封閉曲面.,特別注意兩類曲面積分的區(qū)別,25,將寫成參數(shù)方程:,原式=,原式=,(4) 邊界曲線:z = 0 平面內(nèi)一圓,由斯

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論