八年級數學上冊 12.1平方根與立方根 平方根課時2教案 華東師大版_第1頁
八年級數學上冊 12.1平方根與立方根 平方根課時2教案 華東師大版_第2頁
八年級數學上冊 12.1平方根與立方根 平方根課時2教案 華東師大版_第3頁
全文預覽已結束

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

1、八年級上12.1平方根與立方根 平方根 課時2 教案三維教學目標知識與技能:1、了解算術平方根的概念、會用根號表示一個數的平方根與算術平方根。2、進一步明確平方與開平方是互為逆運算,3、會利用開方運算求某些非負數的平方根與算術平方根。4、會用計算器求某些非負數的算術平方根。過程與方法:1、讓學生經歷概念形成過程,提高學生學習興趣。2、.鼓勵學生進行探索和交流,培養(yǎng)他們的創(chuàng)新意識和合作精神。情感態(tài)度與價值觀:1、培養(yǎng)學生在學習中互相幫助、相互合作的團隊精神。2、培養(yǎng)學生認真仔細的學習態(tài)度,以及思維的嚴謹性。教學重點:會利用開方運算求某些非負數的平方根與算術平方根。教學難點:如何理解是非負數及被開

2、方數是非負數。課堂導入知識回顧:1、什么是平方根?求36、1.44、的平方根。2、 任何數都有平方根嗎?為什么?教學過程一、探索歸納填一填:1、 正數有_個平方根,它們互為相反數。2、 _和_都是64 的平方根3、 _和_都是1.44的平方根4、 0的算術平方根呢?概括:1、算術平方根定義以及表示。我們把正數a的正的平方根叫做a的算術平方根,0的算術平方根為0.記作: 讀作:根號a.所以64的算術平方根表示為2、平方根的表示法正數a的平方根表示為所以64的平方根表示為3、開平方運算二、舉例應用例2將下列各數開平方:(1)49; (2)1.69解(1) 因為749,所以7,因此49的平方根為;(

3、2)因為,所以,因此1.69的平方根為1.3. 如果遇到一些比較大的數求它的算術平方根,可借助計算器。例3用計算器求下列各數的算術平方根:(1) 529;(2) 1225;(3) 44.81解(1) 在計算器上依次鍵入=9525,顯示結果為23,所以529的算術平方根為23(2) 在計算器上依次鍵入=5221,顯示結果為 ,所以1225的算術平方根為(3)略三、課堂練習1、見課本練習(略)。2.的算術平方根是_.(-4)2的算術平方根是 。3、 若有意義,則a能取的最小整數為_.4、 用計算器計算:(1);(2);(3)(精確到0.01)5、 下列說法正確嗎?為什么?如果不正確,那么請你寫出正

4、確答案(1) 0.09的平方根是0.3;(2)答案:2、2,4 3、0 4、(略) 5、(1)0.3;(2)、四、課堂小結:1、算術平方根與平方根的意義與表示方法。2、式子中被開方數應該滿足的條件。3、用計算器求一個非負數的算術平方根的按鍵順序。課堂作業(yè)1、的平方根是_.2、(-2)2的算術平方根是 。3、求下列各數的平方根及算術平方根 5、 若,求x+y的值。答案:1、3 因為=9,9的平方根為3.2、2因為(-2)2 =4,所以4的算術平方根為2。3、 , ;,4、根據題意得:x+1=0 x-y=0 ,解得x=-1,y=-1 x+y=-2教學反思1、對平方根、算術平方根的意義與表示方法不理解學生把誤認為a的平方根;或者把誤認為a的算術平方根,為避免出現錯誤,要徹底弄清楚:正數a有兩個平方根,表示為。有一個算術平方根表示為2、審題不認

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論