版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
1、精品 料推薦基于 GLM(廣義線性模型)的數(shù)據(jù)分析SAS 里的 GLM應(yīng)用在實(shí)際中比較廣泛, 對(duì)數(shù)據(jù)的分析具有比較強(qiáng)的普適性。趨勢(shì)面回歸分析( Trend Analysis ) 是以多元回歸分析為理論基礎(chǔ)的一種預(yù)測(cè)與統(tǒng)計(jì)技術(shù)。 它用空間坐標(biāo)法進(jìn)行多項(xiàng)式回歸, 從中估計(jì)出最佳的回歸模型, 因此也被稱為趨勢(shì)面分析, 當(dāng)不知道手中的數(shù)據(jù)呈線性還是非線性相關(guān)時(shí), 可以采用趨勢(shì)面數(shù)據(jù)分析方法,以便找出擬合數(shù)據(jù)的最佳統(tǒng)計(jì)預(yù)測(cè)模型。本文運(yùn)用 GLM對(duì)一定的數(shù)據(jù)進(jìn)行GLM分析。一、 數(shù)據(jù)與要求此處選取 15 名吧不同程度的煙民的每日飲酒 (啤酒)量與心電圖指標(biāo) ( zb)的對(duì)應(yīng)數(shù)據(jù)。然后設(shè)法建立 zb 與日抽
2、煙量( X)/ 支和日飲酒量( y) / 升之間的關(guān)系。序號(hào)組別日抽煙量( x) / 支日飲酒量( y)/ 升心電圖指標(biāo)( zb)113010280212511260313513330414014400514514410622012270721811210822512280922513300102231329011340144101234515420133481642514350184501535519470二、 運(yùn)用 GLM 過(guò)程進(jìn)行趨勢(shì)面分析1. 趨勢(shì)分析的 GLM 程序data beer;input obsn x y zb;cards;01 30 10 28002 25 11 2601精
3、品 料推薦03 35 13 33004 40 14 40005 45 14 41006 20 12 27007 18 11 21008 25 12 28009 25 13 30010 23 13 29011 40 14 41012 45 15 42013 48 16 42514 50 18 45015 55 19 470;proc glm;model zb=x y/p;proc glm;model zb=x y x*x x*y y*y/p;proc glm;model zb=x y x*x*x x*x*y x*y*y y*y*y/p;proc glm;model zb=x y x*x*xx*x
4、*yx*y*yy*y*yx*x*x*xx*x*x*yx*x*y*yx*y*y*yy*y*y*y/p;run;2. 四種分析模型結(jié)果(1)一階趨勢(shì)模型Dependent Variable: zb源變量自由度平方和均值F 值概率值Sum ofSourceDFSquaresMean SquareF ValuePr FModel290615.2099345307.60497127.19 Fx189541.5655889541.56558251.36 F2精品 料推薦x114652.2435114652.2435141.13 |t|Intercept64.0499938033.065399191.940
5、.0766x5.383855650.839475676.41 FModel593330.8358018666.16716107.75 FX189541.5655889541.56558516.86 Fx1965.2913631965.29136315.570.0426y1127.4395437127.43954370.740.4133x*x143.662297243.66229720.250.6277x*y1242.0343234242.03432341.400.2675y*y149.843031649.84303160.290.6047StandardParameterEstimateErr
6、ort ValuePr |t|Intercept-262.7664793109.1074817-2.410.0394x16.06997796.80786202.360.0426y23.539132727.44498670.860.4133x*x0.06387730.12723830.500.6277x*y-1.16510160.9857119-1.180.2675y*y1.16733622.17629820.540.6047-ObservationObservedPredictedResidual1280.0000000279.41687000.58313002260.0000000258.6
7、8145961.31854043330.0000000351.0997183-21.09971834400.0000000388.125128211.87487185410.0000000414.0657505-4.06575056270.0000000255.125602414.87439767210.0000000216.6773768-6.67737688280.0000000279.94178340.05821669300.0000000303.5367795-3.536779510290.0000000295.5572467-5.557246711410.0000000388.125
8、128221.874871812420.0000000419.02805850.971941513425.0000000436.4318573-11.431857314450.0000000453.7554706-3.755470615470.0000000465.43176994.5682301-Sum of Residuals-0.000000Sum of Squared Residuals1559.164195Sum of Squared Residuals - Error SS-0.000000First Order Autocorrelation-0.354205Durbin-Wat
9、son D2.6948084精品 料推薦(3)三階趨勢(shì)模型Dependent Variable: zb源變量自由度平方和均值F 值概率值Sum ofSourceDFSquaresMean SquareF ValuePr FModel693393.4641415565.5773683.21 Fx189541.5655889541.56558478.66 Fx11643.3470811643.3470818.780.0180y1197.474017197.4740171.060.3343x*x*x1105.516422105.5164220.560.4741x*x*y1113.710330113.
10、7103300.610.4580x*y*y1146.610010146.6100100.780.4018y*y*y1173.116161173.1161610.930.3642StandardParameterEstimateErrort ValuePr |t|Intercept-166.007458982.37772231-2.020.0786x11.13825983.757952332.960.0180y15.778434015.357039051.030.3343x*x*x-0.01541320.02052250-0.750.4741x*x*y0.12031870.154323330.7
11、80.4580x*y*y-0.34167860.38595313-0.890.4018y*y*y0.31348940.325876140.960.3642ObservationObservedPredictedResidual1280.0000000281.0906363-1.09063632260.0000000256.04837833.95162173330.0000000351.8935219-21.89352194400.0000000390.57078969.42921045410.0000000409.23096520.76903486270.0000000257.99834901
12、2.00165107210.0000000220.0483966-10.04839665精品 料推薦8280.0000000275.01603684.98396329300.0000000299.47099730.529002710290.0000000295.8228899-5.822889911410.0000000390.570789619.429210412420.0000000420.5758580-0.575858013425.0000000437.4437284-12.443728414450.0000000455.6875798-5.687579815470.000000046
13、3.53108336.4689167-Sum of Residuals-0.000000Sum of Squared Residuals1496.535862Sum of Squared Residuals - Error SS-0.000000First Order Autocorrelation-0.357545Durbin-Watson D2.686333-(4)四階趨勢(shì)模型Dependent Variable: zb源變量自由度平方和均值F 值概率值Sum ofSourceDFSquaresMean SquareF ValuePr FModel1194480.319198589.119
14、9362.900.0029Error3409.68081136.56027Corrected Total1494890.00000R-SquareCoeff VarRoot MSEzb Mean0.9956833.36769511.68590347.0000SourceDFType I SSMean SquareF ValuePr Fx189541.5655889541.56558655.690.0001y11073.644351073.644357.860.0676x*x*x12078.776642078.7766415.220.0299x*x*y1508.85526508.855263.7
15、30.1491x*y*y117.5061417.506140.130.7440y*y*y1173.11616173.116161.270.3421x*x*x*x152.9156652.915660.390.5777x*x*x*y1193.81980193.819801.420.3192x*x*y*y1452.42798452.427983.310.1663x*y*y*y140.3287940.328790.300.6246y*y*y*y1347.36281347.362812.540.2090-SourceDFType III SSMean SquareF ValuePr Fx153.8347
16、35453.83473540.390.5746y118.442245818.44224580.140.73766精品 料推薦x*x*x1707.3985134707.39851345.180.1073x*x*y1688.7276032688.72760325.040.1104x*y*y1669.2155979669.21559794.900.1137y*y*y1614.9897506614.98975064.500.1239x*x*x*x173.525495773.52549570.540.5162x*x*x*y121.572098721.57209870.160.7176x*x*y*y115
17、0.8940383150.89403831.100.3704x*y*y*y1264.7516451264.75164511.940.2581y*y*y*y1347.3628138347.36281382.540.2090StandardParameterEstimateErrort ValuePr |t|Intercept-748.5352475602.9093096-1.240.3026x21.526850134.28557060.630.5746y63.4532525172.66693160.370.7376x*x*x1.11290830.48897822.280.1073x*x*y-7.
18、84664423.4939960-2.250.1104x*y*y17.69195997.99199322.210.1137y*y*y-12.81731806.0398396-2.120.1239x*x*x*x-0.00528950.0072088-0.730.5162x*x*x*y-0.03396280.0854515-0.400.7176x*x*y*y0.42181270.40127851.050.3704x*y*y*y-1.09527330.7866207-1.390.2581y*y*y*y0.84110790.52737831.590.2090ObservationObservedPre
19、dictedResidual1280.0000000280.6428697-0.64286972260.0000000254.91486495.08513513330.0000000336.2353148-6.23531484400.0000000399.845152400000000409.00291000.99709006270.0000000265.56236444.43763567210.0000000212.0079405-2.00794058280.0000000287.4716063-7.47160639300.0000000292.67012457.329875510290.0000000295.8090433-5.809043311410.0000000399.845152410.154847612420.0000000428.1747562-8.174756213425.0000000422.52284782.477152214450.0000000450.5733972-0.573397215470
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 秋人教版歷史七年級(jí)上冊(cè)習(xí)題課件:期中綜合檢測(cè)題(第1~10課)
- 生理學(xué)奧秘探索:酸堿生理整合課件
- 2026年漳州理工職業(yè)學(xué)院?jiǎn)握新殬I(yè)技能考試模擬試題帶答案解析
- OA方案策劃活動(dòng)面試(3篇)
- 5.1超市活動(dòng)策劃方案(3篇)
- 幼兒托管活動(dòng)策劃方案(3篇)
- 2026年南昌健康職業(yè)技術(shù)學(xué)院?jiǎn)握芯C合素質(zhì)筆試備考試題帶答案解析
- 浙江國(guó)企招聘-2026年臺(tái)州市商貿(mào)核心區(qū)開發(fā)建設(shè)投資集團(tuán)有限公司招聘3人參考題庫(kù)附答案
- 中共廣安市委組織部2026年度公開遴選工作人員參考題庫(kù)完美版
- 2026黑龍江哈爾濱啟航勞務(wù)派遣有限公司派遣至哈爾濱工業(yè)大學(xué)國(guó)際教育學(xué)院招聘10人參考題庫(kù)完美版
- 行政部給公司員工培訓(xùn)
- 中考物理 題型06【電學(xué)實(shí)驗(yàn)題】押題必做15題
- 企業(yè)安全生產(chǎn)責(zé)任制評(píng)估與改進(jìn)方案
- 昆侖神話敘事的百年學(xué)術(shù)史重構(gòu)與跨學(xué)科研究
- (必刷)湖南專升本《基礎(chǔ)護(hù)理學(xué)》考點(diǎn)精粹必做300題-含答案
- 隧道監(jiān)測(cè)與數(shù)據(jù)采集技術(shù)方案
- 總經(jīng)辦辦公室工作總結(jié)及計(jì)劃
- 圍堤水下拋石工程的施工技術(shù)方案與安全措施
- 2025-2030中國(guó)鋼結(jié)構(gòu)建筑在新能源設(shè)施建設(shè)中的應(yīng)用前景報(bào)告
- 焊工安全培訓(xùn)考試題(附答案)
- 2025年直招軍官面試題型及答案
評(píng)論
0/150
提交評(píng)論