導(dǎo)數(shù)的幾何意義.ppt_第1頁(yè)
導(dǎo)數(shù)的幾何意義.ppt_第2頁(yè)
導(dǎo)數(shù)的幾何意義.ppt_第3頁(yè)
導(dǎo)數(shù)的幾何意義.ppt_第4頁(yè)
導(dǎo)數(shù)的幾何意義.ppt_第5頁(yè)
已閱讀5頁(yè),還剩42頁(yè)未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

1、教學(xué)教法分析,課前自主導(dǎo)學(xué),當(dāng)堂雙基達(dá)標(biāo),易錯(cuò)易誤辨析,課后知能檢測(cè),課堂互動(dòng)探究,教師備選資源,11.3導(dǎo)數(shù)的幾何意義,三維目標(biāo) 1知識(shí)與技能 理解導(dǎo)數(shù)的幾何意義,掌握應(yīng)用導(dǎo)數(shù)幾何意義求解曲線切線方程的方法,2過(guò)程與方法 通過(guò)對(duì)切線定義和導(dǎo)數(shù)幾何意義的探討,培養(yǎng)學(xué)生觀察、分析、比較和歸納的能力并通過(guò)對(duì)問題的探究體會(huì)逼近、類比、由己知探討未知、從特殊到一般的數(shù)學(xué)思想方法 3情感、態(tài)度與價(jià)值觀 讓學(xué)生在觀察、思考、發(fā)現(xiàn)中學(xué)習(xí),啟發(fā)學(xué)生在研究問題時(shí),抓住問題本質(zhì),嚴(yán)謹(jǐn)細(xì)致思考,規(guī)范得出解答,重點(diǎn)難點(diǎn) 重點(diǎn):導(dǎo)數(shù)的幾何意義的探討,并應(yīng)用導(dǎo)數(shù)的幾何意義解決相關(guān)問題 難點(diǎn):深刻理解導(dǎo)數(shù)的幾何意義以及對(duì)曲

2、線切線方程的求解,【問題導(dǎo)思】 如圖115所示,Pn的坐標(biāo)為(xn,f(xn)(n1,2,3,4,),P的坐標(biāo)為(x0,y0),直線PT為過(guò)點(diǎn)P的切線,1割線PPn的斜率kn是多少?,2當(dāng)點(diǎn)Pn無(wú)限趨近于點(diǎn)P時(shí),割線PPn的斜率kn與切線PT的斜率k有什么關(guān)系?,【提示】kn無(wú)限趨近于切線PT的斜率k.,2導(dǎo)數(shù)的幾何意義 曲線yf(x)在點(diǎn)(x0,f(x0)處的導(dǎo)數(shù)f(x0)的幾何意義為_,曲線yf(x)在點(diǎn)(x0,f(x0)處的切線的斜率,求曲線在某點(diǎn)處的切線方程,【思路探究】(1)先求切點(diǎn)坐標(biāo),再求y|x2,最后利用導(dǎo)數(shù)的幾何意義寫出切線方程 (2)將切線方程與曲線C的方程聯(lián)立求解,已知拋

3、物線y2x21.求 (1)拋物線上哪一點(diǎn)的切線的傾斜角為45? (2)拋物線上哪一點(diǎn)的切線平行于直線4xy20?,求函數(shù)的平均變化率,(2)拋物線的切線平行于直線4xy20, 斜率為4, 即f(x0)4x04,得x01,該點(diǎn)為(1,3),根據(jù)切線斜率求切點(diǎn)坐標(biāo)的步驟: (1)設(shè)切點(diǎn)坐標(biāo)(x0,y0); (2)求導(dǎo)函數(shù)f(x); (3)求切線的斜率f(x0); (4)由斜率間的關(guān)系列出關(guān)于x0的方程,解方程求x0; (5)點(diǎn)(x0,y0)在曲線f(x)上,將(x0,y0)代入求y0得切點(diǎn)坐標(biāo),本例中條件不變,求拋物線上哪一點(diǎn)的切線垂直于直線x8y30? 【解】拋物線的切線與直線x8y30垂直 拋

4、物線的切線的斜率為8. 由本例知f(x0)4x08,x02,y09. 即所求點(diǎn)坐標(biāo)為(2,9).,已知曲線C:f(x)x21,求過(guò)點(diǎn)P(0,0)且與曲線C相切的切線l的方程 【思路探究】點(diǎn)P不是切點(diǎn),故可設(shè)出切點(diǎn)P0的坐標(biāo),并用其表示出切線l的方程,然后利用切點(diǎn)在曲線上和點(diǎn)P在切線上,建立P0點(diǎn)坐標(biāo)的方程組,解出點(diǎn)P0后進(jìn)一步求切線方程,求函數(shù)的平均變化率,試求過(guò)點(diǎn)P(3,5)且與曲線yx2相切的直線方程,求函數(shù)yx33x2x的圖象上過(guò)原點(diǎn)的切線方程,混淆曲線“在某點(diǎn)”和“過(guò)某點(diǎn)”的切線致誤,【錯(cuò)因分析】本題中原點(diǎn)在函數(shù)的圖象上,誤認(rèn)為原點(diǎn)就是切點(diǎn),混淆了“過(guò)原點(diǎn)的切線”與“在原點(diǎn)處的切線”的

5、區(qū)別,導(dǎo)致解題失誤 【防范措施】求曲線的切線時(shí),注意區(qū)分“求曲線yf(x)上過(guò)點(diǎn)M的切線”與“求曲線yf(x)上在點(diǎn)M處的切線”,前者只要求切線過(guò)M點(diǎn),M點(diǎn)未必是切點(diǎn),因此求解時(shí)應(yīng)先設(shè)出切點(diǎn)坐標(biāo);而后者則很明確,切點(diǎn)就是M點(diǎn),1求曲線在點(diǎn)(x0,y0)處的切線方程 已知點(diǎn)(x0,y0)為切點(diǎn),則先求出函數(shù)yf(x)在點(diǎn)x0處的導(dǎo)數(shù),然后根據(jù)直線的點(diǎn)斜式方程,得切線方程yy0f(x0)(xx0) 2求曲線過(guò)點(diǎn)(x0,y0)的切線方程 已知點(diǎn)(x0,y0)不論在不在曲線上都不一定是切點(diǎn),故先設(shè)出切點(diǎn)坐標(biāo),寫出切線方程,然后利用已知點(diǎn)(x0,y0)在切線上,求出切點(diǎn)坐標(biāo)進(jìn)而求出切線方程,3若曲線yf

6、(x)在點(diǎn)P(x0,f(x0)處的導(dǎo)數(shù)f(x0)不存在,則切線與y軸平行或重合;若f(x0)0,則切線與x軸正方向夾角是銳角;若f(x0)0,則切線與x軸正方向夾角為鈍角;若f(x0)0,則切線與x軸平行或重合 4根據(jù)導(dǎo)數(shù)的幾何意義知,f(x0)能反應(yīng)曲線在xx0處的升降及升降快慢程度,f(x0)為正值,曲線在該點(diǎn)處上升,f(x0)為負(fù)值,曲線在該點(diǎn)處下降,|f(x0)|越大,曲線在該點(diǎn)升降速度越快,1已知曲線yf(x)在點(diǎn)(1,f(1)處的切線方程為2xy20,則f(1)() A4B4C2D2 【解析】由導(dǎo)數(shù)的幾何意義知f(1)2,故選D. 【答案】D,2已知函數(shù)yf(x)的圖象如圖116所

7、示,則f(xA)與f(xB)的大小關(guān)系是() Af(xA)f(xB) Bf(xA)f(xB) Cf(xA)f(xB) D不能確定,【解析】由圖象易知,點(diǎn)A、B處的切線斜率kA、kB滿足kAkB0.由導(dǎo)數(shù)的幾何意義,得f(xA)f(xB) 【答案】B,【解析】點(diǎn)P(5,y)在直線yx8上, f(5)3. 又由導(dǎo)數(shù)的幾何意義可知f(5)1, f(5)f(5)312. 【答案】2,4已知曲線f(x)x2的一條過(guò)點(diǎn)P(x0,y0)的切線,求: (1)切線平行于直線yx2時(shí)切點(diǎn)P的坐標(biāo)及切線方程; (2)切線垂直于直線2x6y50時(shí)切點(diǎn)P的坐標(biāo)及切線方程; (3)切線與x軸正方向成60的傾斜角時(shí)切點(diǎn)P的坐標(biāo)及切線方程,課后知能檢測(cè) 點(diǎn)擊圖標(biāo)進(jìn)入,已知曲線f(x)x21和g(x)x3x在其交點(diǎn)處兩切線的夾角為,求cos . 【思路探究】要求cos 的值,需求兩曲線的交點(diǎn)及兩曲線在切點(diǎn)處切線的斜率,利用向量的數(shù)量積求解,(教師用書獨(dú)具),與導(dǎo)數(shù)幾何意義相關(guān)題目的解題策略: (1)導(dǎo)導(dǎo)數(shù)

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

最新文檔

評(píng)論

0/150

提交評(píng)論