初中幾何知識歸納_第1頁
初中幾何知識歸納_第2頁
初中幾何知識歸納_第3頁
初中幾何知識歸納_第4頁
初中幾何知識歸納_第5頁
已閱讀5頁,還剩19頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡介

1、最新資料推薦初中數(shù)學(xué)課本幾何部分知識點(diǎn)歸納第一部分圖形認(rèn)識初步圖形認(rèn)識初步一、圖形認(rèn)識初步1幾何圖形:把從實(shí)物中抽象出來的各種圖形的統(tǒng)稱。2平面圖形:有些幾何圖形的各部分都在同一平面內(nèi),這樣的圖形是平面圖形。3立體圖形:有些幾何圖形的各部分不都在同一平面內(nèi),這樣的圖形是立體圖形。4展開圖:有些立體圖形是由一些平面圖形圍成的,將它們的表面適當(dāng)剪開,可以展開成平面圖形, 這樣的平面圖形稱為相應(yīng)立體圖形的展開圖。5點(diǎn),線,面,體圖形是由點(diǎn),線,面構(gòu)成的。線與線相交得點(diǎn),面與面相交得線。點(diǎn)動(dòng)成線,線動(dòng)成面,面動(dòng)成體。二、直線、線段、射線1線段:線段有兩個(gè)端點(diǎn)。2射線:將線段向一個(gè)方向無限延長就形成了射

2、線。射線只有一個(gè)端點(diǎn)。3直線:將線段的兩端無限延長就形成了直線。直線沒有端點(diǎn)。4兩點(diǎn)確定一條直線:經(jīng)過兩點(diǎn)有一條直線,并且只有一條直線。5相交:兩條直線有一個(gè)公共點(diǎn)時(shí),稱這兩條直線相交。1最新資料推薦6兩條直線相交有一個(gè)公共點(diǎn),這個(gè)公共點(diǎn)叫交點(diǎn)。7中點(diǎn): M 點(diǎn)把線段 AB 分成相等的兩條線段AM 與 MB,點(diǎn) M 叫做線段 AB 的中點(diǎn)。8線段的性質(zhì):兩點(diǎn)的所有連線中,線段最短。 (兩點(diǎn)之間,線段最短)9距離:連接兩點(diǎn)間的線段的長度,叫做這兩點(diǎn)的距離。三、角1角:有公共端點(diǎn)的兩條射線組成的圖形叫做角。2角的度量單位:度、分、秒。3角的度量與表示:角由兩條具有公共端點(diǎn)的射線組成,兩條射線的公共

3、端點(diǎn)是這個(gè)角的頂點(diǎn)。一度的 1/60 是一分,一分的1/60 是一秒。角的度、分、秒是60進(jìn)制。4角的比較:角也可以看成是由一條射線繞著他的端點(diǎn)旋轉(zhuǎn)而成的。平角和周角: 一條射線繞著他的端點(diǎn)旋轉(zhuǎn),當(dāng)終邊和始邊成一條直線時(shí),所成的角叫做平角。始邊繼續(xù)旋轉(zhuǎn),當(dāng)他又和始邊重合時(shí),所成的角叫做周角。平角等于180 度。周角等于360 度。直角等于90度。工具:量角器、三角尺、經(jīng)緯儀。5平分線:從一個(gè)角的頂點(diǎn)引出的一條射線,把這個(gè)角分成兩個(gè)相等的角,這條射線叫做這個(gè)角的平分線。 性質(zhì):角平分線上的點(diǎn)到角的兩邊距離相等。 逆定理:在角的內(nèi)部,到角的兩邊距離相等的點(diǎn)在角平分線上。2最新資料推薦(三角形的內(nèi)心

4、:利用角的平分線的性質(zhì)定理可以導(dǎo)出:三角形的三個(gè)內(nèi)角的角平分線交于一點(diǎn),此點(diǎn)叫做三角形的內(nèi)心,它到三邊的距離相等。)6余角和補(bǔ)角余角:兩個(gè)角的和等于 90 度,這兩個(gè)角互為余角。即其中每一個(gè)是另一個(gè)角的余角。補(bǔ)角:兩個(gè)角的和等于180 度,這兩個(gè)角互為補(bǔ)角。 即其中一個(gè)是另一個(gè)角的補(bǔ)角。補(bǔ)角的性質(zhì):等角的補(bǔ)角相等余角的性質(zhì):等角的余角相等相交線與平行線一、相交線兩條直線相交,形成4 個(gè)角。1鄰補(bǔ)角:兩個(gè)角有一條公共邊, 它們的另一條邊互為反向延長線。具有這種關(guān)系的兩個(gè)角,互為鄰補(bǔ)角。如:1、 2。2對頂角:兩個(gè)角有一個(gè)公共頂點(diǎn),并且一個(gè)角的兩條邊,分別是另一個(gè)角的兩條邊的反向延長線,具有這種關(guān)

5、系的兩個(gè)角,互為對頂角。如:1、 3。3對頂角相等。二、垂線1垂直:如果兩條直線相交成直角,那么這兩條直線互相垂直。2垂線: 垂直是相交的一種特殊情形,兩條直線垂直,其中一條直線叫做另一條直線的垂線。3垂足:兩條垂線的交點(diǎn)叫垂足。3最新資料推薦4垂線特點(diǎn):過一點(diǎn)有且只有一條直線與已知直線垂直。5點(diǎn)到直線的距離: 直線外一點(diǎn)到這條直線的垂線段的長度,叫點(diǎn)到直線的距離。 連接直線外一點(diǎn)與直線上各點(diǎn)的所有線段中, 垂線段最短。三、同位角、內(nèi)錯(cuò)角、同旁內(nèi)角(兩條直線被第三條直線所截形成8 個(gè)角。 )1同位角:在兩條直線的上方,又在直線EF 的同側(cè),具有這種位置關(guān)系的兩個(gè)角叫同位角。如:1 和 5。2內(nèi)

6、錯(cuò)角:在在兩條直線之間,又在直線EF 的兩側(cè),具有這種位置關(guān)系的兩個(gè)角叫內(nèi)錯(cuò)角。如:3 和 5。3同旁內(nèi)角:在在兩條直線之間,又在直線EF的同側(cè),具有這種位置關(guān)系的兩個(gè)角叫同旁內(nèi)角。如:3 和 6。四、平行線( 一) 平行線1. 平行:兩條直線不相交?;ハ嗥叫械膬蓷l直線,互為平行線。 ab(在同一平面內(nèi),不相交的兩條直線叫做平行線。)2平行公理:經(jīng)過直線外一點(diǎn), 有且只有一條直線與這條直線平行。3. 平行公理推論:平行于同一直線的兩條直線互相平行。在同一平面內(nèi),垂直于同一直線的兩條直線互相平行。( 二) 平行線的判定:1. 同位角相等,兩直線平行。2. 內(nèi)錯(cuò)角相等,兩直線平行。3. 同旁內(nèi)角互

7、補(bǔ),兩直線平行。( 三) 平行線的性質(zhì)4最新資料推薦1. 兩條平行線被第三條直線所截,同位角相等。2. 兩條平行線被第三條直線所截,內(nèi)錯(cuò)角相等。3. 兩條平行線被第三條直線所截,同旁內(nèi)角互補(bǔ)。4. 兩條平行線被第三條直線所截,外錯(cuò)角相等。以上性質(zhì)可簡單說成:1. 兩條直線平行,同位角相等。2. 兩條直線平行,內(nèi)錯(cuò)角相等。3. 兩條直線平行,同旁內(nèi)角互補(bǔ)。第二部分三角形三角形知識點(diǎn) 1三角形的邊、角關(guān)系三角形任何兩邊之和大于第三邊;三角形任何兩邊之差小于第三邊;三角形三個(gè)內(nèi)角的和等于180;三角形三個(gè)外角的和等于 360;三角形一個(gè)外角等于和它不相鄰的兩個(gè)內(nèi)角的和; 三角形一個(gè)外角大于任何一個(gè)和

8、它不相鄰的內(nèi)角。知識點(diǎn) 2三角形的主要線段和外心、內(nèi)心三角形的角平分線、中線、高;三角形三邊的垂直平分線交于一點(diǎn),這個(gè)點(diǎn)叫做三角形的外心, 三角形的外心到各頂點(diǎn)的距離相等;三角形的三條角平分線交于一點(diǎn),這個(gè)點(diǎn)叫做三角形的內(nèi)心,三角形的內(nèi)心到三邊的距離相等;連結(jié)三角形兩邊中點(diǎn)的線段叫做三角形的中位線,三角形的中位線平行于第三邊且等于第三邊的一半。5最新資料推薦知識點(diǎn) 3等腰三角形等腰三角形的識別:有兩邊相等的三角形是等腰三角形;有兩角相等的三角形是等腰三角形(等角對等邊) ; 三邊相等的三角形是等邊三角形; 三個(gè)角都相等的三角形是等邊三角形;有一個(gè)角是 60的等腰三角形是等邊三角形。等腰三角形的

9、性質(zhì): 等邊對等角;等腰三角形的頂角平分線、底邊上的中線、底邊上的高互相重合; 等腰三角形是軸對稱圖形, 底邊的中垂線是它的對稱軸; 等邊三角形的三個(gè)內(nèi)角都等于 60。知識點(diǎn) 4直角三角形直角三角形的識別:有一個(gè)角等于90的三角形是直角三角形;有兩個(gè)角互余的三角形是直角三角形; 勾股定理的逆定理: 如果一個(gè)三角形兩邊的平方和等于第三邊的平方, 那么這個(gè)三角形是直角三角形。直角三角形的性質(zhì):直角三角形的兩個(gè)銳角互余;直角三角形斜邊上的中線等于斜邊的一半;勾股定理: 直角三角形兩直角邊的平方和等于斜邊的平方。知識點(diǎn) 5全等三角形定義、判定、性質(zhì)一、與三角形有關(guān)的線段( 一) 三角形1. 三角形:由

10、不在同一直線上的三條線段首尾順次連接所組成的封閉圖形叫做三角形。記作: ABC2三角形三邊的關(guān)系:兩邊之和大于第三邊。三角形的兩邊的差一定小于第三邊。( 二) 三角形的高、中線與角平分線1. 高:從三角形的頂點(diǎn)向它所對的邊做垂線,所得的線段叫三角形這6最新資料推薦個(gè)邊上的高。2中線:連接項(xiàng)點(diǎn)和它所對的邊的中點(diǎn),所得的線段叫三角形這個(gè)邊上的中線。3角平分線:三角形一個(gè)頂角的平分線與它所對的邊相交,所得的線段叫三角形的角平分線。4三角形的中位線:連接三角形兩邊中點(diǎn)的線段。三角形的中位線平行于三角形的第三邊,且等于第三邊的一半。( 三)三角形的穩(wěn)定性三角形具有穩(wěn)定性,四邊形沒有穩(wěn)定性。二、與三角形有

11、關(guān)的角1內(nèi)角:三角形的內(nèi)角和等于180 。2外角:三角形一邊與另一邊的延長線組成的角叫三角形的外角。三角形一個(gè)外角等于與它不相鄰的兩個(gè)內(nèi)角的和。三角形一個(gè)外角大于與它不相鄰的任何一個(gè)內(nèi)角。三、多邊形及其內(nèi)角和1. 多邊形:由有一些線段首位順次相接組成的圖形叫做多邊形2多邊形內(nèi)角:多邊形相鄰兩邊組成的角叫做它的內(nèi)角,3外角:多邊形的邊與它的鄰邊的延長線組成的角叫做多邊形的外角。4對角線:連接多邊形不相鄰的兩個(gè)頂點(diǎn)的線段,叫做多邊形的對角線。5凸多邊形:畫出多邊形的任何一條邊所在的直線,如果整個(gè)多邊形都在這條直線的同一側(cè), 那么這個(gè)多邊形就是凸多邊形,否則就是凹多邊形。6正多邊形各個(gè)角都相等,各條

12、邊都相等的多邊形叫做正多邊形。7最新資料推薦7如果說四邊形的一對角互補(bǔ),那么另一組角也互補(bǔ)。8多邊形的內(nèi)角和: n 邊形的內(nèi)角和等于180( n-2 );。9多邊形的外角和等于360(n 邊形的邊 =(內(nèi)角和 180) +2 ;過 n 邊形一個(gè)頂點(diǎn)有( n-3 )條對角線 ;n 邊形過一個(gè)頂點(diǎn)引出所有對角線后, 把多邊形分成 n-2 個(gè)三角形 )等腰三角形1等腰三角形:有兩條邊相等的三角形,叫做等腰三角形。(相等的兩條邊叫做腰, 另一條邊叫做底邊, 兩腰所夾的角叫做頂角, 底邊與腰的夾角叫做底角。 )2 等腰三角形的性質(zhì)( 1)等腰三角形的兩個(gè)底角相等(簡稱“等邊對等角” )。(2)等腰三角形

13、的頂角平分線、底邊上的中線、底邊上的高相互重合。3判定:如果一個(gè)三角形有兩個(gè)角相等,那么這兩個(gè)角所對的邊也相等。(簡稱“等角對等邊” )。4等邊三角形 :三條邊都相等的三角形叫做等邊三角形。5等邊三角形的性質(zhì):等邊三角形的三個(gè)內(nèi)角都相等,并且每一個(gè)角都等于 60。6判定 : 三個(gè)角都相等的三角形是等邊三角形。有一個(gè)角是60的等腰三角形是等邊三角形。AD直角三角行CB1.勾股定理:命題 1:如果直角三角形的兩直角邊長分別為a,b,斜邊長為 c,那么 a2b2=c2。2勾股定理的逆定理:如果三角形三邊長a,b,c 滿足 a2b2=c2。,那8最新資料推薦么這個(gè)三角形是直角三角形。3直角三角形斜邊上

14、的中線等于斜邊的一半。全等三角形一、全等形能夠完全重合的兩個(gè)圖形叫做全等形。二、全等三角形全等三角形:能夠完全重合的兩個(gè)三角形叫做全等三角形。(兩個(gè)三角形全等,互相重合的頂點(diǎn)叫做對應(yīng)點(diǎn) ,互相重合的邊叫做對應(yīng)邊 ,互相重合的角叫做 對應(yīng)角 。 )全等三角形的符號表示、讀法:與全等記作, “”讀作“全等于” 。(兩個(gè)三角形全等時(shí),通常把對應(yīng)頂點(diǎn)的字母寫在對應(yīng)的位置上,這樣對應(yīng)的兩個(gè)字母為端點(diǎn)的線段是對應(yīng)邊;對應(yīng)的三個(gè)字母表示的角是對應(yīng)角)。全等三角形的性質(zhì):全等三角形的對應(yīng)邊相等,對應(yīng)角相等。二、三角形全等的判定:1三邊對應(yīng)相等的兩個(gè)三角形全等,簡寫成“邊邊邊”或“”。2兩邊和他們的夾角對應(yīng)相等

15、的兩個(gè)三角形全等,簡寫成“邊角邊”或“”。3兩角和他們的夾邊對應(yīng)相等的兩個(gè)三角形全等,簡寫成“角邊角”或“”。4兩個(gè)角和其中一個(gè)角的對邊對應(yīng)相等的兩個(gè)三角形全等,簡寫成“角角邊”或“” 。5斜邊和一條直角邊對應(yīng)相等的兩個(gè)直角三角形全等,簡寫成“斜9最新資料推薦邊、直角邊”或“” 。(、不能識別兩個(gè)三角形全等,識別兩個(gè)三角形全等時(shí),必須有邊的參與,如果有兩邊和一角對應(yīng)相等時(shí),角必須是兩邊的夾角。)三、相似三角形1性質(zhì):平行于三角形一邊的直線和其他兩邊或兩邊延長線相交,所構(gòu)成的三角形與原三角形相似。2判定 . 如果兩個(gè)三角形的三組對應(yīng)邊的比相等,那么這兩個(gè)三角形相似。如果兩個(gè)三角形的兩組對應(yīng)邊的比

16、相等,并且相應(yīng)的夾角相等,那么這兩個(gè)三角形相似。如果一個(gè)三角形的兩個(gè)角與另一個(gè)三角形的兩個(gè)角對應(yīng)相等,那么這兩個(gè)三角形相似。( 三邊對應(yīng)成比例兩個(gè)三角形的兩個(gè)角對應(yīng)相等;兩邊對應(yīng)成比例, 且夾角相等; 相似三角形的一切對應(yīng)線段( 對應(yīng)高、 對應(yīng)中線、對應(yīng)角平分線、外接圓半徑、內(nèi)切圓半徑等)的比等于相似比。)3相似三角形應(yīng)用視點(diǎn):眼睛的位置;仰角:視線與水平線的夾角;盲區(qū):看不到的區(qū)域。4相似三角形的周長與面積:相似三角形周長的比等于相似比。相似多邊形周長的比等于相似比。相似三角形面積的比等于相似比的平方。相似多邊形面積的比等于相似比的平方。10最新資料推薦第四部分四邊形一、平行四邊行 ( 第十

17、九章 )(一)平行四邊形的性質(zhì)1.平行四邊形定義:有兩組對邊分別平行的四邊形叫做平行四邊形。2.平行四邊形的性質(zhì): 平行四邊形的對邊相等; 平行四邊形的對角相等。平行四邊形的對角線互相平分。(二)平行四邊形的判定1.兩組對邊分別相等的四邊形是平行四邊形2.對角線互相平分的四邊形是平行四邊形;3.兩組對角分別相等的四邊形是平行四邊形;4.一組對邊平行且相等的四邊形是平行四邊形。二、特殊的平行四邊形(一)矩形1矩形的定義:有一個(gè)角是直角的平行四邊形叫做矩形。2矩形的性質(zhì): 矩形的四個(gè)角都是直角; 矩形的對角線平分且相等。 AC=BD3矩形判定定理: 有一個(gè)角是直角的平行四邊形叫做矩形。 對角線相等

18、的平行四邊形是矩形。 有三個(gè)角是直角的四邊形是矩形。5 - 14黃金矩形:寬和長的比是2(約為 0.618 )的矩形叫做。(二)菱形1菱形的定義:有一組鄰邊相等的平行四邊形叫做菱形。2菱形的性質(zhì): 菱形的四條邊都相等; 菱形的兩條對角線互相垂直,并且每一條對角線平分一組對角。11最新資料推薦3菱形的判定定理: 一組鄰邊相等的平行四邊形是菱形。 對角線互相垂直的平行四邊形是菱形。四條邊相等的四邊形是菱形。S菱形 =1/2 ab(a、b 為兩條對角線)(三)正方形1正方形定義:一個(gè)角是直角的菱形或鄰邊相等的矩形。2正方形的性質(zhì):四條邊都相等,四個(gè)角都是直角。3正方形判定定理: 鄰邊相等的矩形是正方

19、形。 有一個(gè)角是直角的菱形是正方形。三、梯形1梯形:一組對邊平行,另一組對邊不平行的四邊形叫做梯形。2直角梯形:有一個(gè)角是直角的梯形3等腰梯形:兩腰相等的梯形。4等腰梯形的性質(zhì): 等腰梯形同一底邊上的兩個(gè)角相等; 等腰梯形的兩條對角線相等。5等腰梯形判定定理: 同一底上兩個(gè)角相等的梯形是等腰梯形。6解梯形問題常用的輔助線:如圖四、課題學(xué)習(xí)重心重心:是物體的質(zhì)量中心,能夠保持物體平衡的點(diǎn)就是重心。(是一個(gè)平衡點(diǎn) ) 線段的重心就是線段的中點(diǎn)。平行四邊形的重心是它的兩條對角線的交點(diǎn)。 三角形的三條中線交于一點(diǎn),這一點(diǎn)就是三角形的重心。12最新資料推薦第五部分圓一、圓的相關(guān)概念(第二十四章 )1、圓

20、的定義:在一個(gè)個(gè)平面內(nèi),線段OA繞它固定的一個(gè)端點(diǎn)O旋轉(zhuǎn)一周,另一個(gè)端點(diǎn)A 隨之旋轉(zhuǎn)所形成的圖形叫做圓,固定的端點(diǎn)O 叫做圓心,線段 OA叫做半徑 。2、圓的幾何表示: 以點(diǎn) O為圓心的圓記作“ O”,讀作“圓 O”二、弦、弧等與圓有關(guān)的定義( 1)弦:連接圓上任意兩點(diǎn)的線段叫做弦。 (如圖中的 AB)( 2)直徑:經(jīng)過圓心的弦叫做直徑。 (如途中的 CD)直徑等于半徑的2 倍。( 3)半圓:圓的任意一條直徑的兩個(gè)端點(diǎn)分圓成兩條弧,每一條弧都叫做半圓。( 4)弧、優(yōu)弧、劣弧:圓上任意兩點(diǎn)間的部分叫做圓弧,簡稱弧。弧用符號“”表示,以 A,B 為端點(diǎn)的弧記作“ ”,讀作“圓弧 AB”或“弧 AB

21、”。大于半圓的弧叫做優(yōu)?。ǘ嘤萌齻€(gè)字母表示) ;小于半圓的弧叫做劣?。ǘ嘤脙蓚€(gè)字母表示)三、垂徑定理及其推論1垂徑定理:垂直于弦的直徑平分這條弦,并且平分弦所對的弧。推論 1:(1)平分弦 ( 不是直徑 ) 的直徑垂直于弦,并且平分弦所對的兩條弧。(2)弦的垂直平分線經(jīng)過圓心,并且平分弦所對的兩條弧。(3)平分弦所對的一條弧的直徑垂直平分弦,并且平分弦所對的13最新資料推薦另一條弧。推論 2:圓的兩條平行弦所夾的弧相等。四、圓的對稱性1、圓的軸對稱性:圓是軸對稱圖形,經(jīng)過圓心的每一條直線都是它的對稱軸。2、圓的中心對稱性:圓是以圓心為對稱中心的中心對稱圖形。五、弧、弦、弦心距、圓心角之間的關(guān)系

22、定理1、圓心角:頂點(diǎn)在圓心的角叫做圓心角。2、弦心距:從圓心到弦的距離叫做弦心距。3、弧、弦、弦心距、圓心角之間的關(guān)系定理在同圓或等圓中,相等的圓心角所對的弧相等,所對的弦想等,所對的弦的弦心距相等。推論:在同圓或等圓中,如果兩個(gè)圓的圓心角、兩條弧、兩條弦或兩條弦的弦心距中有一組量相等, 那么它們所對應(yīng)的其余各組量都分別相等。六、圓周角定理及其推論1、圓周角:頂點(diǎn)在圓上,并且兩邊都和圓相交的角叫做圓周角。2、圓周角定理:一條弧所對的圓周角等于它所對的圓心角的一半。推論 1:同弧或等弧所對的圓周角相等;同圓或等圓中,相等的圓周角所對的弧也相等。推論 2:半圓(或直徑)所對的圓周角是直角;90的圓

23、周角所對的弦是直徑。推論 3:如果三角形一邊上的中線等于這邊的一半,那么這個(gè)三14最新資料推薦角形是直角三角形。七、點(diǎn)和圓的位置關(guān)系設(shè) O的半徑是 r ,點(diǎn) P 到圓心 O的距離為 d,則有:dr點(diǎn) P 在 O外。八、過三點(diǎn)的圓1、過三點(diǎn)的圓:不在同一直線上的三個(gè)點(diǎn)確定一個(gè)圓。2、三角形的外接圓:經(jīng)過三角形的三個(gè)頂點(diǎn)的圓叫做三角形的外接圓。3、三角形的外心:三角形的外接圓的圓心是三角形三條邊的垂直平分線的交點(diǎn),它叫做這個(gè)三角形的外心。4、圓內(nèi)接四邊形性質(zhì)(四點(diǎn)共圓的判定條件) :圓內(nèi)接四邊形對角互補(bǔ)。十、直線與圓的位置關(guān)系直線和圓有三種位置關(guān)系,具體如下:( 1)相交:直線和圓有兩個(gè)公共點(diǎn)時(shí),

24、叫做直線和圓相交,這時(shí)直線叫做圓的割線,公共點(diǎn)叫做交點(diǎn);( 2)相切:直線和圓有唯一公共點(diǎn)時(shí),叫做直線和圓相切,這時(shí)直線叫做圓的切線,( 3)相離:直線和圓沒有公共點(diǎn)時(shí),叫做直線和圓相離。如果 O的半徑為 r ,圓心 O到直線 l 的距離為 d, 那么:直線 l 與 O相交 dr ;十一、切線的判定和性質(zhì)1、切線的判定定理:經(jīng)過半徑的外端并且垂直于這條半徑的直線是圓的切線。2、切線的性質(zhì)定理:圓的切線垂直于經(jīng)過切點(diǎn)的半徑。十二、切線長定理1、切線長:在經(jīng)過圓外一點(diǎn)的圓的切線上,這點(diǎn)和切點(diǎn)之間的線段的長叫做這點(diǎn)到圓的切線長。2、切線長定理:從圓外一點(diǎn)引圓的兩條切線,它們的切線長相等,圓心和這一點(diǎn)

25、的連線平分兩條切線的夾角。十三、三角形的內(nèi)切圓1、三角形的內(nèi)切圓:與三角形的各邊都相切的圓叫做三角形的內(nèi)切圓。2、三角形的內(nèi)心:三角形的內(nèi)切圓的圓心是三角形的三條內(nèi)角平分線的交點(diǎn),它叫做三角形的內(nèi)心。十四、圓和圓的位置關(guān)系1、圓和圓的位置關(guān)系:如果兩個(gè)圓沒有公共點(diǎn),那么就說這兩個(gè)圓相離,相離分為外離和內(nèi)含兩種。如果兩個(gè)圓只有一個(gè)公共點(diǎn),那么就說這兩個(gè)圓相切, 相切分為外切和內(nèi)切兩種。如果兩個(gè)圓有兩個(gè)公共點(diǎn),那么就說這兩個(gè)圓相交。2、圓心距:兩圓圓心的距離叫做兩圓的圓心距。3、圓和圓位置關(guān)系的性質(zhì)與判定設(shè)兩圓的半徑分別為R和 r ,圓心距為 d,那么16最新資料推薦兩圓外離dR+r兩圓外切d=R

26、+r兩圓相交R-rdr)兩圓內(nèi)含dr)4、兩圓相切、相交的重要性質(zhì):如果兩圓相切,那么切點(diǎn)一定在連心線上,它們是軸對稱圖形,對稱軸是兩圓的連心線;相交的兩個(gè)圓的連心線垂直平分兩圓的公共弦。十五、正多邊形和圓1、正多邊形的定義:各邊相等,各角也相等的多邊形叫做正多邊形。2、正多邊形和圓的關(guān)系:只要把一個(gè)圓分成相等的一些弧,就可以做出這個(gè)圓的內(nèi)接正多邊形, 這個(gè)圓就是這個(gè)正多邊形的外接圓。十六、與正多邊形有關(guān)的概念1、正多邊形的中心:正多邊形的外接圓的圓心叫做這個(gè)正多邊形的中心。2、正多邊形的半徑:正多邊形的外接圓的半徑叫做這個(gè)正多邊形的半徑。3、正多邊形的邊心距:正多邊形的中心到正多邊形一邊的距

27、離叫做這個(gè)正多邊形的邊心距。4、中心角:正多邊形的每一邊所對的外接圓的圓心角叫做這個(gè)正多邊形的中心角。十七、正多邊形的對稱性1、正多邊形的軸對稱性:正多邊形都是軸對稱圖形。一個(gè)正n17最新資料推薦邊形共有 n 條對稱軸,每條對稱軸都通過正n邊形的中心。2、正多邊形的中心對稱性:邊數(shù)為偶數(shù)的正多邊形是中心對稱圖形,它的對稱中心是正多邊形的中心。3、正多邊形的畫法: 先用量角器或尺規(guī)等分圓, 再做正多邊形。十八、弧長和扇形面積n r1、弧長公式: n的圓心角所對的弧長ll 的計(jì)算公式為180S扇nR 21 lR2、扇形面積公式:3602 其中 n 是扇形的圓心角度數(shù),R是扇形的半徑, l 是扇形的

28、弧長。S1 l2 rrl3、圓錐的側(cè)面積:2其中 l 是圓錐的母線長, r 是圓錐的地面半徑。4、弦切角定理:弦切角:圓的切線與經(jīng)過切點(diǎn)的弦所夾的角,叫做弦切角。弦切角定理:弦切角等于弦與切線夾的弧所對的圓周角。即: BAC=ADC5、切割線定理PA為 O切線, PBC為 O割線,則 PA 2PBPC18最新資料推薦第六部分圖形變換平移 ( 第四章 )一、平移 : 平移是指在平面內(nèi),將一個(gè)圖形沿著某個(gè)方向移動(dòng)一定的距離,這樣的圖形運(yùn)動(dòng)叫做平移變換( 簡稱平移 ) ,平移不改變物體的形狀和大小。二、平移的性質(zhì)把一個(gè)圖形整體沿某一直線方向移動(dòng), 會得到一個(gè)新的圖形, 新圖形與原圖形的形狀和大小完全

29、相同。新圖形中的每一點(diǎn), 都是由原圖形中的某一點(diǎn)移動(dòng)后得到的, 這兩個(gè)點(diǎn)是對應(yīng)點(diǎn)。連接各組對應(yīng)點(diǎn)的線段平行且相等。軸對稱 ( 第十二章 )一、軸對稱1軸對稱圖形 :如果一個(gè)圖形沿一條直線折疊,直線兩旁的部分能夠互相重合,這個(gè)圖形就叫做軸對稱圖形 ,這條直線就叫做 對稱軸。折疊后重合的點(diǎn)是對應(yīng)點(diǎn),叫做對稱點(diǎn)。2線段的垂直平分線:經(jīng)過線段中點(diǎn)并且垂直于這條線段的直線,叫做這條線段的垂直平分線3軸對稱的性質(zhì): 1.如果兩個(gè)圖形關(guān)于某條直線對稱,那么對稱軸是任何一對對應(yīng)點(diǎn)所連線段的垂直平分線。(或者說軸對稱圖形的對稱軸,是任何一對對應(yīng)點(diǎn)所連線段的垂直平分線. )4線段垂直平分線的性質(zhì):線段垂直平分線上

30、的點(diǎn)與這條線段兩個(gè)端點(diǎn)的距離相等。 (或者說與一條線段兩個(gè)端點(diǎn)距離相等的點(diǎn),在這19最新資料推薦條線段的垂直平分線上)。二、作軸對稱圖形1歸納 1:由一個(gè)平面圖形可以得到它關(guān)于一條直線L 成對稱軸的圖形,這個(gè)圖形與原圖形的大小、形狀,完全相同。新圖形上的每一點(diǎn),都是原圖形上某一點(diǎn)關(guān)于直線L 的對稱點(diǎn)。 連接任意一對對應(yīng)點(diǎn)的線段都被對稱軸垂直平分。2歸納2:幾何圖形都可以看做由點(diǎn)組成,我們只要分別做出這些點(diǎn)關(guān)于對稱軸的對應(yīng)點(diǎn), 再連接這些對應(yīng)點(diǎn), 就可以得以原圖形的軸對稱圖形;對于一些由直線、線段或射線組成的圖形,只要做出圖形中的一些特殊點(diǎn) (如線段的端點(diǎn) )的對稱點(diǎn),連接這些對稱點(diǎn),就可以得到

31、原圖形的軸對稱圖形。軸對稱變換 :由一個(gè)平面圖形得到它的軸對稱圖形叫做軸對稱變換。3用坐標(biāo)表示軸對稱: (1)點(diǎn) P(x,y)關(guān)于 x 軸對稱的點(diǎn)的坐標(biāo)為 P(x,-y);(2)點(diǎn) P(x,y)關(guān)于 y 軸對稱的點(diǎn)的坐標(biāo)為 P(-x,y)。中心對稱 ( 第二十三章旋轉(zhuǎn) )一、旋轉(zhuǎn)1、定義:把一個(gè)圖形繞某一點(diǎn) O 轉(zhuǎn)動(dòng)一個(gè)角度的圖形變換叫做旋轉(zhuǎn),其中 O叫做旋轉(zhuǎn)中心 ,轉(zhuǎn)動(dòng)的角叫做 旋轉(zhuǎn)角 。2、性質(zhì)( 1)對應(yīng)點(diǎn)到旋轉(zhuǎn)中心的距離相等。( 2)對應(yīng)點(diǎn)與旋轉(zhuǎn)中心所連線段的夾角等于旋轉(zhuǎn)角。 旋轉(zhuǎn)前后的圖形全等。二、中心對稱20最新資料推薦1、定義:把一個(gè)圖形繞著某一個(gè)點(diǎn)旋轉(zhuǎn)180,如果旋轉(zhuǎn)后的圖形能

32、夠和原來的圖形互相重合,那么這個(gè)圖形叫做中心對稱 圖形,這個(gè)點(diǎn)就是它的 對稱中心 。2、性質(zhì)( 1)關(guān)于中心對稱的兩個(gè)圖形是全等形。( 2)關(guān)于中心對稱的兩個(gè)圖形,對稱點(diǎn)連線都經(jīng)過對稱中心,并且被對稱中心平分。( 3)關(guān)于中心對稱的兩個(gè)圖形,對應(yīng)線段平行(或在同一直線上)且相等。3、判定:如果兩個(gè)圖形的對應(yīng)點(diǎn)連線都經(jīng)過某一點(diǎn),并且被這一點(diǎn)平分,那么這兩個(gè)圖形關(guān)于這一點(diǎn)對稱。4、中心對稱圖形:把一個(gè)圖形繞某一個(gè)點(diǎn)旋轉(zhuǎn)180,如果旋轉(zhuǎn)后的圖形能夠和原來的圖形互相重合,那么這個(gè)圖形叫做中心對稱圖形,這個(gè)店就是它的對稱中心。5、關(guān)于原點(diǎn)對稱的點(diǎn)的特征:兩個(gè)點(diǎn)關(guān)于原點(diǎn)對稱時(shí),它們的坐標(biāo)的符號相反,即點(diǎn)P

33、(x,y)關(guān)于原點(diǎn)的對稱點(diǎn)為P(-x ,-y )6、關(guān)于 x 軸對稱的點(diǎn)的特征:兩個(gè)點(diǎn)關(guān)于 x 軸對稱時(shí),它們的坐標(biāo)中, x 相等, y 的符號相反,即點(diǎn) P(x,y)關(guān)于 x 軸的對稱點(diǎn)為 P(x,-y )。7、關(guān)于 y 軸對稱的點(diǎn)的特征:兩個(gè)點(diǎn)關(guān)于 y 軸對稱時(shí),它們的坐標(biāo)中, y 相等, x 的符號相反,即點(diǎn) P(x,y)關(guān)于 y 軸的對稱點(diǎn)為 P(-x ,y)。相似 ( 第二十七章 )21最新資料推薦一、圖形的相似1圖形的相似:如果兩個(gè)圖形形狀相同 , 但大小不一定相等 , 那么這兩個(gè)圖形相似。 (相似的符號:)性質(zhì):相似多邊形的對應(yīng)角相等,對應(yīng)邊的比相等。2判定:如果兩個(gè)多邊形滿足對

34、應(yīng)角相等,對應(yīng)邊的比相等,那么這兩個(gè)多邊形相似。3相似比:相似多邊形的對應(yīng)邊的比叫相似比。相似比為1 時(shí),相似的兩個(gè)圖形全等。二、相似三角形1性質(zhì):平行于三角形一邊的直線和其他兩邊或兩邊延長線相交,所構(gòu)成的三角形與原三角形相似。2判定 . 如果兩個(gè)三角形的三組對應(yīng)邊的比相等,那么這兩個(gè)三角形相似。如果兩個(gè)三角形的兩組對應(yīng)邊的比相等,并且相應(yīng)的夾角相等,那么這兩個(gè)三角形相似。如果一個(gè)三角形的兩個(gè)角與另一個(gè)三角形的兩個(gè)角對應(yīng)相等,那么這兩個(gè)三角形相似。( 三邊對應(yīng)成比例兩個(gè)三角形的兩個(gè)角對應(yīng)相等;兩邊對應(yīng)成比例, 且夾角相等; 相似三角形的一切對應(yīng)線段( 對應(yīng)高、 對應(yīng)中線、對應(yīng)角平分線、外接圓半徑、內(nèi)切圓半徑等)的比等于相似比。)3相似三角形應(yīng)用視點(diǎn):眼睛的位置;仰角:視線與水平線的夾角;盲區(qū):看不到的區(qū)域。4相似三角形的周長與面積:相似三角

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論