版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
1、初中數(shù)學(xué)總結(jié)初中數(shù)學(xué)總結(jié)一、基本知識(一)、數(shù)與代數(shù)A 、數(shù)與式:1 、有理數(shù):整數(shù): 正整數(shù)、 0、負(fù)整數(shù);分?jǐn)?shù): 正分?jǐn)?shù)、負(fù)分?jǐn)?shù);數(shù)軸:畫一條水平直線,在直線上取一點(diǎn)表示0(原點(diǎn)),選取某一長度作為單位長度,規(guī)定直線上向右的方向?yàn)檎较?,就得到?shù)軸。任何一個(gè)有理數(shù)都可以用數(shù)軸上的一個(gè)點(diǎn)來表示。如果兩個(gè)數(shù)只有符號不同,那么我們稱其中一個(gè)數(shù)為另外一個(gè)數(shù)的相反數(shù),也稱這兩個(gè)數(shù)互為相反數(shù)。在數(shù)軸上,表示互為相反數(shù)的兩個(gè)點(diǎn),位于原點(diǎn)的兩側(cè),并且與原點(diǎn)距離相等。數(shù)軸上兩個(gè)點(diǎn)表示的數(shù),右邊的總比左邊的大。正數(shù)大于0,負(fù)數(shù)小于 0 ,正數(shù)大于負(fù)數(shù)。絕對值:在數(shù)軸上,一個(gè)數(shù)所對應(yīng)的點(diǎn)與原點(diǎn)的距離叫做該數(shù)的絕
2、對值。正數(shù)的絕對值是他的本身、負(fù)數(shù)的絕對值是他的相反數(shù)、0 的絕對值是0 。兩個(gè)負(fù)數(shù)比較大小,絕對值大的反而小。有理數(shù)的運(yùn)算:加法:同號相加,取相同的符號,把絕對值相加。異號相加,絕對值相等時(shí)和為0 ;絕對值不等時(shí),取絕對值較大的數(shù)的符號,并用較大的絕對值減去較小的絕對值。一個(gè)數(shù)與 0 相加不變。減法:減去一個(gè)數(shù),等于加上這個(gè)數(shù)的相反數(shù)。初中數(shù)學(xué)總結(jié)乘法:兩數(shù)相乘,同號得正,異號得負(fù),絕對值相乘。任何數(shù)與0 相乘得0。乘積為1 的兩個(gè)有理數(shù)互為倒數(shù)。除法: 除以一個(gè)數(shù)等于乘以這個(gè)數(shù)的倒數(shù)。0不能作除數(shù)。乘方:求 n 個(gè)相同因數(shù)a 的積的運(yùn)算叫做乘方,a n 乘方的結(jié)果叫冪,a 叫底數(shù),n叫次數(shù)
3、?;旌享樞颍合人愠朔ǎ偎愠顺?,最后算加減,有括號要先算括號里的。2 、實(shí)數(shù)無理數(shù): 無限不循環(huán)小數(shù)叫無理數(shù)平方根:如果一個(gè)正數(shù)x 的平方等于 a ,那么這個(gè)正數(shù)x 就叫做 a 的算術(shù)平方根。如果一個(gè)數(shù) x 的平方等于 a ,那么這個(gè)數(shù) x 就叫做 a 的平方根。一個(gè)正數(shù)有 2 個(gè)平方根, 0 的平方根為 0,負(fù)數(shù)沒有平方根。求一個(gè)數(shù) a 的平方根運(yùn)算,叫做開平方,其中a 叫做被開方數(shù)。立方根:如果一個(gè)數(shù) x 的立方等于 a ,那么這個(gè)數(shù) x 就叫做 a 的立方根。正數(shù)的立方根是正數(shù)、0 的立方根是 0 、負(fù)數(shù)的立方根是負(fù)數(shù)。求一個(gè)數(shù) a 的立方根的運(yùn)算叫開立方,其中a 叫做被開方數(shù)。實(shí)數(shù):實(shí)
4、數(shù)分有理數(shù)和無理數(shù)。在實(shí)數(shù)范圍內(nèi),相反數(shù),倒數(shù),絕對值的意義和有理數(shù)范圍內(nèi)的相反數(shù),倒數(shù),絕對值的意義完全一樣。每一個(gè)實(shí)數(shù)都可以在數(shù)軸上的一個(gè)點(diǎn)來表示。3 、代數(shù)式:初中數(shù)學(xué)總結(jié)代數(shù)式: 單獨(dú)一個(gè)數(shù)或者一個(gè)字母也是代數(shù)式。合并同類項(xiàng):所含字母相同,并且相同字母的指數(shù)也相同的項(xiàng),叫做同類項(xiàng)。把同類項(xiàng)合并成一項(xiàng)就叫做合并同類項(xiàng)。在合并同類項(xiàng)時(shí),我們把同類項(xiàng)的系數(shù)相加,字母和字母的指數(shù)不變。4 、整式與分式整式:數(shù)與字母的乘積的代數(shù)式叫單項(xiàng)式, 幾個(gè)單項(xiàng)式的和叫多項(xiàng)式, 單項(xiàng)式和多項(xiàng)式統(tǒng)稱整式。一個(gè)單項(xiàng)式中,所有字母的指數(shù)和叫做這個(gè)單項(xiàng)式的次數(shù)。一個(gè)多項(xiàng)式中,次數(shù)最高的項(xiàng)的次數(shù)叫做這個(gè)多項(xiàng)式的次數(shù)。
5、整式運(yùn)算: 加減運(yùn)算時(shí),如果遇到括號先去括號,再合并同類項(xiàng)。am ? a na m namam na n冪的運(yùn)算:a n ? b n ;(ab) n( a )nanbbn整式的乘法:單項(xiàng)式與單項(xiàng)式相乘, 把他們的系數(shù), 相同字母的冪分別相乘, 其余字母連同他的指數(shù)不變,作為積的因式。單項(xiàng)式與多項(xiàng)式相乘,就是根據(jù)分配律用單項(xiàng)式去乘多項(xiàng)式的每一項(xiàng),再把所得的積相加。多項(xiàng)式與多項(xiàng)式相乘,先用一個(gè)多項(xiàng)式的每一項(xiàng)乘另外一個(gè)多項(xiàng)式的每一項(xiàng),再把所得的積相加。公式兩條:平方差公式: a 2b 2(a b)( a b) ;完全平方公式: (a b)2a 22ab b 2整式的除法:單項(xiàng)式相除,把系數(shù),同底數(shù)冪
6、分別相除后,作為商的因式;對于只在被除式里含有的字初中數(shù)學(xué)總結(jié)母,則連同他的指數(shù)一起作為商的一個(gè)因式。多項(xiàng)式除以單項(xiàng)式,先把這個(gè)多項(xiàng)式的每一項(xiàng)分別除以單項(xiàng)式,再把所得的商相加。分解因式: 把一個(gè)多項(xiàng)式化成幾個(gè)整式的積的形式,這種變化叫做把這個(gè)多項(xiàng)式分解因式。方法:提公因式法、運(yùn)用公式法、分組分解法、十字相乘法。分式:整式 A 除以整式 B,如果除式 B 中含有分母,那么這個(gè)就是分式,對于任何一個(gè)分式,分母不能為 0。分式的分子與分母同乘以或除以同一個(gè)不等于0 的整式,分式的值不變。 分式的運(yùn)算:乘法:把分子相乘的積作為積的分子,把分母相乘的積作為積的分母。除法:除以一個(gè)分式等于乘以這個(gè)分式的倒
7、數(shù)。加減法:同分母分式相加減,分母不變,把分子相加減。異分母的分式先通分,化為同分母的分式,再加減。分式方程:分母中含有未知數(shù)的方程叫分式方程。使方程的分母為0 的解稱為原方程的增根。B 、方程與不等式1 、方程與方程組一元一次方程:在一個(gè)方程中,只含有一個(gè)未知數(shù),并且未知數(shù)的指數(shù)是 1 ,這樣的方程叫一元一次方程。等式兩邊同時(shí)加上或減去或乘以或除以(不為 0 )一個(gè)代數(shù)式,所得結(jié)果仍是等式。解一元一次方程的步驟: 去分母,移項(xiàng),合并同類項(xiàng),將未知數(shù)系數(shù)化為1 。二元一次方程: 含有兩個(gè)未知數(shù),并且所含未知數(shù)的項(xiàng)的次數(shù)都是1 的方程叫做二元一次方程。初中數(shù)學(xué)總結(jié)適合一個(gè)二元一次方程的一組未知數(shù)
8、的值,叫做這個(gè)二元一次方程的一個(gè)解。二元一次方程組: 兩個(gè)二元一次方程組成的方程組叫做二元一次方程組。二元一次方程組中各個(gè)方程的公共解,叫做這個(gè)二元一次方程的解。解二元一次方程組的方法:代入消元法、加減消元法。一元二次方程: 只有一個(gè)未知數(shù),并且未知數(shù)的項(xiàng)的最高系數(shù)為2 的方程1 )一元二次方程的二次函數(shù)的關(guān)系二次函數(shù)(如拋物線 y ax 2bx c ),一元二次方程的解可在二次函數(shù)圖象中表示,一元二次方程也是二次函數(shù)的一個(gè)特殊情況,就是當(dāng)y 為 0的時(shí)候就構(gòu)成了一元二次方程了。那如果在平面直角坐標(biāo)系中表示出來,一元二次方程就是二次函數(shù)中,圖象與x 軸的交點(diǎn)就是該方程的解。2 )一元二次方程的
9、解法: 二次函數(shù)圖像有頂點(diǎn): (b, 4ac b 2) ,利用他可以求出所有的一元2a4a二次方程的解(1) 配方法: 利用配方,使方程變?yōu)橥耆椒焦剑匍_平方法去求解。(2) 分解因式法: 提取公因式,利用公式法、十字相乘法。把方程化為幾個(gè)乘積的形式去解(3) 公式法: 這方法也可以是在解一元二次方程的萬能方法了,2bx c (xbbb24acbb 24acaxb24ac, x2)( x bb24ac) 0方程的根為:x12a2a2a2a;3 )解一元二次方程的步驟:(1) 配方法的步驟: 先把常數(shù)項(xiàng)移到方程的右邊,再把二次項(xiàng)的系數(shù)化為1,再同時(shí)加上1 次項(xiàng)的系數(shù)的一半的平方,最后配成完全
10、平方公式(2) 分解因式法的步驟: 把方程右邊化為 0,然后看看是否能用提取公因式,公式法(這里指的是分解因式中的公式法)或十字相乘,如果可以,就可以化為乘積的形式(3) 公式法: 就把一元二次方程的各系數(shù)分別代入,二次項(xiàng)的系數(shù)為a,一次項(xiàng)的系數(shù)為b ,常初中數(shù)學(xué)總結(jié)數(shù)項(xiàng)的系數(shù)為 c。4 )韋達(dá)定理: 韋達(dá)定理就是在一元二次方程中,二根之和 x1 x2b ,二根之積: x1 x2caa利用韋達(dá)定理,可以求出一元二次方程中的各系數(shù),在題目中很常用5 )一元一次方程根的情況:根的判別式:b 24ac ,I.當(dāng)0 時(shí),一元二次方程有2 個(gè)不相等的實(shí)數(shù)根;II.當(dāng)=0 時(shí),一元二次方程有2 個(gè)相同的實(shí)
11、數(shù)根;III. 當(dāng) ”,或“ ”,號連接的式子叫不等式。不等式的兩邊都加上或減去同一個(gè)整式,不等號的方向不變。不等式的兩邊都乘以或者除以一個(gè)正數(shù),不等號方向不變。不等式的兩邊都乘以或除以同一個(gè)負(fù)數(shù),不等號方向相反。不等式的解集:能使不等式成立的未知數(shù)的值,叫做不等式的解。一個(gè)含有未知數(shù)的不等式的所有解,組成這個(gè)不等式的解集。求不等式解集的過程叫做解不等式。一元一次不等式: 左右兩邊都是整式,只含有一個(gè)未知數(shù),且未知數(shù)的最高次數(shù)是1 的不等式叫一元一次不等式。一元一次不等式組:關(guān)于同一個(gè)未知數(shù)的幾個(gè)一元一次不等式合在一起,就組成了一元一次不等式組。一元一次不等式組中各個(gè)不等式的解集的公共部分,叫
12、做這個(gè)一元一次不等式組的解集。求不等式組解集的過程,叫做解不等式組。初中數(shù)學(xué)總結(jié)一元一次不等式的符號方向:在一元一次不等式中,不像等式那樣,等號是不變的,他是隨著你加或乘的運(yùn)算改變。在不等式中,如果加上同一個(gè)數(shù),不等式符號不改向;例如:若 ab, 則 acbc。在不等式中,如果減去同一個(gè)數(shù),不等式符號不改向;例如:若 ab,則 acbc。在不等式中,如果乘以同一個(gè)正數(shù),不等號不改向;例如:若 ab, 則 a ? cb ? c(c0)。在不等式中,如果乘以同一個(gè)負(fù)數(shù),不等號反向;例如:若 ab, 則 a ?cb ? c(c0)。如果不等式乘以0,那么不等號改為等號所以在題目中,要求出乘以的數(shù),那
13、么就要看看題中是否出現(xiàn)一元一次不等式,如果出現(xiàn)了,那么不等式乘以的數(shù)就不等為0 ,否則不等式不成立;3 、函數(shù):變量:因變量,自變量。在用圖象表示變量之間的關(guān)系時(shí),通常用水平方向的數(shù)軸x 上的點(diǎn)表示自變量,用豎直方向的數(shù)軸 y 上的點(diǎn)表示因變量。一次函數(shù):若兩個(gè)變量x、 y 間的關(guān)系式可以表示成:ykxb (b 為常數(shù), k 不等于 0 )的形式,則稱 y 是 x 的一次函數(shù)。當(dāng) b=0 時(shí),即: ykx(k0) 稱 y 是 x 的正比例函數(shù)。一次函數(shù)的圖象:把一個(gè)函數(shù)的自變量x 與對應(yīng)的因變量y 的值分別作為點(diǎn)的橫坐標(biāo)與縱坐標(biāo),在直角坐標(biāo)系內(nèi)描出它的對應(yīng)點(diǎn),所有這些點(diǎn)組成的圖形叫做該函數(shù)的圖
14、象。正比例函數(shù)ykx( k0) 的圖象是經(jīng)過原點(diǎn)的一條直線。在一次函數(shù)中,當(dāng)k0 , b0 ,b0 時(shí),則經(jīng) 1、2 、4 象限;當(dāng) k0 ,b0 ,b0 時(shí),則經(jīng) 1、 2 、3 象限。當(dāng) k0 時(shí), Y 的值隨 x 值的增大而增大,當(dāng)k0 時(shí), y 的值隨 x 值的增大而減少。初中數(shù)學(xué)總結(jié)( 二)空間與圖形A 、圖形的認(rèn)識1 、點(diǎn),線,面:圖形是由點(diǎn),線,面構(gòu)成的。面與面相交得線,線與線相交得點(diǎn)。點(diǎn)動(dòng)成線,線動(dòng)成面,面動(dòng)成體。展開與折疊:在棱柱中,任何相鄰的兩個(gè)面的交線叫做棱,側(cè)棱是相鄰兩個(gè)側(cè)面的交線,棱柱的所有側(cè)棱長相等,棱柱的上下底面的形狀相同,側(cè)面的形狀都是長方體。N 棱柱就是底面圖
15、形有N 條邊的棱柱。截一個(gè)幾何體: 用一個(gè)平面去截一個(gè)圖形,截出的面叫做截面。視圖:主視圖,左視圖,俯視圖。多邊形: 他們是由一些不在同一條直線上的線段依次首尾相連組成的封閉圖形?;?、扇形: 由一條弧和經(jīng)過這條弧的端點(diǎn)的兩條半徑所組成的圖形叫扇形。圓可以分割成若干個(gè)扇形。2 、角角的度量與表示:角由兩條具有公共端點(diǎn)的射線組成,兩條射線的公共端點(diǎn)是這個(gè)角的頂點(diǎn)。一度的1 是一分,一分的 1 是一秒。 1=60 ;1=60 ;6060角的比較:角也可以看成是由一條射線繞著他的端點(diǎn)旋轉(zhuǎn)而成的。一條射線繞著他的端點(diǎn)旋轉(zhuǎn),當(dāng)終邊和始邊成一條直線時(shí),所成的角叫做平角。始邊繼續(xù)旋轉(zhuǎn),當(dāng)他又和始邊重合時(shí),所成
16、的角叫做周角。從一個(gè)角的頂點(diǎn)引出的一條射線,把這個(gè)角分成兩個(gè)相等的角,這條射線叫做這個(gè)角的平初中數(shù)學(xué)總結(jié)分線。3 、線:線段有兩個(gè)端點(diǎn)。將線段向一個(gè)方向無限延長就形成了射線。射線只有一個(gè)端點(diǎn)。將線段的兩端無限延長就形成了直線。直線沒有端點(diǎn)。經(jīng)過兩點(diǎn)有且只有一條直線。比較長短:兩點(diǎn)之間的所有連線中,線段最短。兩點(diǎn)之間線段的長度,叫做這兩點(diǎn)之間的距離。平行:同一平面內(nèi),不相交的兩條直線叫做平行線。經(jīng)過直線外一點(diǎn),有且只有一條直線與這條直線平行。如果兩條直線都與第三條直線平行,那么這兩條直線互相平行。垂直:如果兩條直線相交成直角,那么這兩條直線互相垂直?;ハ啻怪钡膬蓷l直線的交點(diǎn)叫做垂足。平面內(nèi),過一
17、點(diǎn)有且只有一條直線與已知直線垂直。垂直平分線: 垂直和平分一條線段的直線叫垂直平分線。垂直平分線垂直平分的一定是線段,不能是射線或直線,這根射線和直線可以無限延長有關(guān),垂直平分線是一條直線,所以在畫垂直平分線的時(shí)候,確定了兩點(diǎn)后,一定要把線段穿出兩點(diǎn)。角平分線: 把一個(gè)角平分的射線叫該角的角平分線。定義中有幾個(gè)要點(diǎn)要注意,1.角的角平分線是一條射線,不是線段也不是直線,在題目中會(huì)出現(xiàn)直線,這是角平分線作為對稱軸才會(huì)用直線的,這也涉及到軌跡的問題, 2.一個(gè)角的角平分線就是到角兩邊距離相等的點(diǎn)的軌跡。初中數(shù)學(xué)總結(jié)正方形: 一組鄰邊相等的矩形是正方形性質(zhì):正方形具有平行四邊形、菱形、矩形的一切性質(zhì)
18、判定: 1 、對角線相等的菱形2、鄰邊相等的矩形二、基本定理1 、過兩點(diǎn)有且只有一條直線2 、兩點(diǎn)之間線段最短3 、同角或等角的補(bǔ)角相等4 、同角或等角的余角相等5 、過一點(diǎn)有且只有一條直線和已知直線垂直6 、直線外一點(diǎn)與直線上各點(diǎn)連接的所有線段中,垂線段最短7 、平行公理: 經(jīng)過直線外一點(diǎn),有且只有一條直線與這條直線平行8 、如果兩條直線都和第三條直線平行,這兩條直線也互相平行9 、同位角相等,兩直線平行10 、內(nèi)錯(cuò)角相等,兩直線平行11 、同旁內(nèi)角互補(bǔ),兩直線平行12 、兩直線平行,同位角相等13 、兩直線平行,內(nèi)錯(cuò)角相等14 、兩直線平行,同旁內(nèi)角互補(bǔ)15 、定理: 三角形兩邊的和大于第
19、三邊16 、推論: 三角形兩邊的差小于第三邊17 、三角形內(nèi)角和定理: 三角形三個(gè)內(nèi)角的和等于 180 18 、推論 1 : 直角三角形的兩個(gè)銳角互余19 、推論 2 :三角形的一個(gè)外角等于和它不相鄰的兩個(gè)內(nèi)角的和20 、推論 3 :三角形的一個(gè)外角大于任何一個(gè)和它不相鄰的內(nèi)角初中數(shù)學(xué)總結(jié)21 、全等三角形的對應(yīng)邊、對應(yīng)角相等22 、邊角邊公理 (SAS): 有兩邊和它們的夾角對應(yīng)相等的兩個(gè)三角形全等23 、角邊角公理 ( ASA) 有兩角和它們的夾邊對應(yīng)相等的兩個(gè)三角形全等24 、推論 (AAS) :有兩角和其中一角的對邊對應(yīng)相等的兩個(gè)三角形全等25 、邊邊邊公理 (SSS) :有三邊對應(yīng)相
20、等的兩個(gè)三角形全等26 、斜邊、直角邊公理 (HL) :有斜邊和一條直角邊對應(yīng)相等的兩個(gè)直角三角形全等27 、定理 1 :在角的平分線上的點(diǎn)到這個(gè)角的兩邊的距離相等28 、定理 2 :到一個(gè)角的兩邊的距離相同的點(diǎn),在這個(gè)角的平分線上29 、角的平分線是到角的兩邊距離相等的所有點(diǎn)的集合30 、等腰三角形的性質(zhì)定理:等腰三角形的兩個(gè)底角相等(即等邊對等角)31 、推論 1 :等腰三角形頂角的平分線平分底邊并且垂直于底邊32 、等腰三角形的頂角平分線、底邊上的中線和底邊上的高互相重合33、推論 3 等邊三角形的各角都相等,并且每一個(gè)角都等于60 34、等腰三角形的判定定理: 如果一個(gè)三角形有兩個(gè)角相
21、等,那么這兩個(gè)角所對的邊也相等 (等角對等邊)35 、推論 1 :三個(gè)角都相等的三角形是等邊三角形36 、推論 2 :有一個(gè)角等于 60 的等腰三角形是等邊三角形37 、在直角三角形中,如果一個(gè)銳角等于30 那么它所對的直角邊等于斜邊的一半38 、直角三角形斜邊上的中線等于斜邊的一半39 、定理:線段垂直平分線上的點(diǎn)和這條線段兩個(gè)端點(diǎn)的距離相等40 、逆定理:和一條線段兩個(gè)端點(diǎn)距離相等的點(diǎn),在這條線段的垂直平分線上41 、線段的垂直平分線可看作和線段兩端點(diǎn)距離相等的所有點(diǎn)的集合42 、定理 1 :關(guān)于某條直線對稱的兩個(gè)圖形是全等形43 、定理 2 :如果兩個(gè)圖形關(guān)于某直線對稱,那么對稱軸是對應(yīng)
22、點(diǎn)連線的垂直平分線初中數(shù)學(xué)總結(jié)44 、定理 3:兩個(gè)圖形關(guān)于某直線對稱,如果它們的對應(yīng)線段或延長線相交,那么交點(diǎn)在對稱軸上45 、逆定理:如果兩個(gè)圖形的對應(yīng)點(diǎn)連線被同一條直線垂直平分,那么這兩個(gè)圖形關(guān)于這條直線對稱46 、勾股定理:直角三角形兩直角邊 a、 b 的平方和等于斜邊 c 的平方,即: a2 b 2 c 247 、勾股定理的逆定理:如果三角形的三邊長 a、b 、c 有關(guān)系 a 2 b2 c 2 ,那么這個(gè)三角形是直角三角形48 、定理:四邊形的內(nèi)角和等于 360 49 、四邊形的外角和等于 360 50 、多邊形內(nèi)角和定理: n 邊形的內(nèi)角的和等于( n-2 )180 51 、推論:
23、任意多邊的外角和等于 360 52 、平行四邊形性質(zhì)定理 1 :平行四邊形的對角相等53 、平行四邊形性質(zhì)定理 2 :平行四邊形的對邊相等54 、推論:夾在兩條平行線間的平行線段相等55 、平行四邊形性質(zhì)定理 3 :平行四邊形的對角線互相平分56 、平行四邊形判定定理 1 :兩組對角分別相等的四邊形是平行四邊形57 、平行四邊形判定定理 2 :兩組對邊分別相等的四邊形是平行四邊形58 、平行四邊形判定定理 3 :對角線互相平分的四邊形是平行四邊形59 、平行四邊形判定定理 4 :一組對邊平行相等的四邊形是平行四邊形60 、矩形性質(zhì)定理 1 :矩形的四個(gè)角都是直角61 、矩形性質(zhì)定理 2 :矩形
24、的對角線相等62 、矩形判定定理 1 :有三個(gè)角是直角的四邊形是矩形63 、矩形判定定理 2 :對角線相等的平行四邊形是矩形64 、菱形性質(zhì)定理 1 :菱形的四條邊都相等初中數(shù)學(xué)總結(jié)65、菱形性質(zhì)定理 2 :菱形的對角線互相垂直,并且每一條對角線平分一組對角66、菱形面積等于對角線乘積的一半,即: S1 ab267、菱形判定定理 1:四邊都相等的四邊形是菱形68、菱形判定定理 2:對角線互相垂直的平行四邊形是菱形69、正方形性質(zhì)定理1 :正方形的四個(gè)角都是直角,四條邊都相等70、正方形性質(zhì)定理2 :正方形的兩條對角線相等,并且互相垂直平分,每條對角線平分一組對角71 、定理 1 :關(guān)于中心對稱
25、的兩個(gè)圖形是全等的72 、定理 2 :關(guān)于中心對稱的兩個(gè)圖形,對稱點(diǎn)連線都經(jīng)過對稱中心,并且被對稱中心平分73 、逆定理:如果兩個(gè)圖形的對應(yīng)點(diǎn)連線都經(jīng)過某一點(diǎn),并且被這一點(diǎn)平分,那么這兩個(gè)圖形關(guān)于這一點(diǎn)對稱74 、等腰梯形性質(zhì)定理:等腰梯形在同一底上的兩個(gè)角相等75 、等腰梯形的兩條對角線相等76 、等腰梯形判定定理:在同一底上的兩個(gè)角相等的梯形是等腰梯形77 、對角線相等的梯形是等腰梯形78 、平行線等分線段定理:如果一組平行線在一條直線上截得的線段相等,那么在其他直線上截得的線段也相等79 、推論 1 :經(jīng)過梯形一腰的中點(diǎn)與底平行的直線,必平分另一腰80 、推論 2 :經(jīng)過三角形一邊的中點(diǎn)
26、與另一邊平行的直線,必平分第三邊81 、三角形中位線定理:三角形的中位線平行于第三邊,并且等于它的一半l1 (ab)82、梯形中位線定理: 梯形的中位線平行于兩底, 并且等于兩底和的一半21 (aSb) ? h l ? h283、(1) 比例的基本性質(zhì): 如果:ac ,那么 adbc;如果: adbc,那么:ac 。bdbd初中數(shù)學(xué)總結(jié)84 、(2) 合比性質(zhì):如果:ac ,那么:a bcdbdbd85 、(3) 等比性質(zhì):如果:acm ,那么:acmacbdnbdnbd86 、平行線分線段成比例定理:三條平行線截兩條直線,所得的對應(yīng)線段成比例87 、推論:平行于三角形一邊的直線截其他兩邊(或
27、兩邊的延長線) ,所得的對應(yīng)線段成比例88 、定理:如果一條直線截三角形的兩邊(或兩邊的延長線)所得的對應(yīng)線段成比例,那么這條直線平行于三角形的第三邊89 、平行于三角形的一邊,并且和其他兩邊相交的直線,所截得的三角形的三邊與原三角形三邊對應(yīng)成比例90 、定理:平行于三角形一邊的直線和其他兩邊(或兩邊的延長線)相交,所構(gòu)成的三角形與原三角形相似91 、相似三角形判定定理 1 :兩角對應(yīng)相等,兩三角形相似( ASA )92 、直角三角形被斜邊上的高分成的兩個(gè)直角三角形和原三角形相似93 、判定定理 2:兩邊對應(yīng)成比例且夾角相等,兩三角形相似( SAS)94 、判定定理 3:三邊對應(yīng)成比例,兩三角
28、形相似( SSS)95 、定理:如果一個(gè)直角三角形的斜邊和一條直角邊與另一個(gè)直角三角形的斜邊和一條直角邊對應(yīng)成比例,那么這兩個(gè)直角三角形相似96 、性質(zhì)定理 1:相似三角形對應(yīng)高的比,對應(yīng)中線的比與對應(yīng)角平分線的比都等于相似比97 、性質(zhì)定理 2:相似三角形周長的比等于相似比98 、性質(zhì)定理 3:相似三角形面積的比等于相似比的平方99 、任意銳角的正弦值等于它的余角的余弦值,任意銳角的余弦值等于它的余角的正弦值100 、任意銳角的正切值等于它的余角的余切值,任意銳角的余切值等于它的余角的正切值101 、圓是到定點(diǎn)的距離等于定長的點(diǎn)的集合102 、圓的內(nèi)部可以看作是到圓心的距離小于半徑的點(diǎn)的集合
29、103 、圓的外部可以看作是到圓心的距離大于半徑的點(diǎn)的集合初中數(shù)學(xué)總結(jié)104 、同圓或等圓的半徑相等105 、到定點(diǎn)的距離等于定長的點(diǎn)的軌跡,是以定點(diǎn)為圓心,定長為半徑的圓106 、和已知線段兩個(gè)端點(diǎn)的距離相等的點(diǎn)的軌跡,是這條線段的垂直平分線107 、到已知角的兩邊距離相等的點(diǎn)的軌跡,是這個(gè)角的平分線108 、到兩條平行線距離相等的點(diǎn)的軌跡,是和這兩條平行線平行且距離相等的一條直線109 、定理:不在同一直線上的三點(diǎn)確定一個(gè)圓。110 、垂徑定理:垂直于弦的直徑平分這條弦并且平分弦所對的兩條弧111 、推論 1:平分弦(不是直徑)的直徑垂直于弦,并且平分弦所對的兩條??;弦的垂直平分線經(jīng)過圓心
30、,并且平分弦所對的兩條??;平分弦所對的一條弧的直徑,垂直平分弦,并且平分弦所對的另一條弧。112 、推論 2:圓的兩條平行弦所夾的弧相等113 、圓是以圓心為對稱中心的中心對稱圖形114 、定理:在同圓或等圓中,相等的圓心角所對的弧相等,所對的弦相等,所對的弦的弦心距相等115 、推論:在同圓或等圓中,如果兩個(gè)圓心角、兩條弧、兩條弦或兩弦的弦心距中有一組量相等,那么它們所對應(yīng)的其余各組量都相等116 、定理:一條弧所對的圓周角等于它所對的圓心角的一半117 、推論 1:同弧或等弧所對的圓周角相等;同圓或等圓中,相等的圓周角所對的弧也相等118 、推論 2:半圓(或直徑)所對的圓周角是直角; 9
31、0 的圓周角所對的弦是直徑119 、推論 3:如果三角形一邊上的中線等于這邊的一半,那么這個(gè)三角形是直角三角形120 、定理:圓的內(nèi)接四邊形的對角互補(bǔ),并且任何一個(gè)外角都等于它的內(nèi)對角121 、直線 L 和 O 相交: d r直線 L 和 O 相切: d=r直線 L 和 O 相離: d r122 、切線的判定定理:經(jīng)過半徑的外端并且垂直于這條半徑的直線是圓的切線123 、切線的性質(zhì)定理:圓的切線垂直于經(jīng)過切點(diǎn)的半徑初中數(shù)學(xué)總結(jié)124 、推論 1:經(jīng)過圓心且垂直于切線的直線必經(jīng)過切點(diǎn)125 、推論 2:經(jīng)過切點(diǎn)且垂直于切線的直線必經(jīng)過圓心126 、切線長定理: 從圓外一點(diǎn)引圓的兩條切線,它們的切
32、線長相等;圓心和這一點(diǎn)的連線平分兩條切線的夾角127 、圓的外切四邊形的兩組對邊的和相等128 、弦切角定理 弦切角等于它所夾的弧對的圓周角129 、推論:如果兩個(gè)弦切角所夾的弧相等,那么這兩個(gè)弦切角也相等130 、相交弦定理: 圓內(nèi)的兩條相交弦,被交點(diǎn)分成的兩條線段長的積相等131 、推論:如果弦與直徑垂直相交,那么弦的一半是它分直徑所成的兩條線段的比例中項(xiàng)132 、切割線定理: 從圓外一點(diǎn)引圓的切線和割線,切線長是這點(diǎn)到割線與圓交點(diǎn)的兩條線段長的比例中項(xiàng)133 、推論:從圓外一點(diǎn)引圓的兩條割線,這一點(diǎn)到每條割線與圓的交點(diǎn)的兩條線段長的積相等134 、如果兩個(gè)圓相切,那么切點(diǎn)一定在連心線上1
33、35 、兩圓的位置關(guān)系(假設(shè):rR ):兩圓外離: dRr兩圓外切: dRr兩圓相交 RrdRr,兩圓內(nèi)切dRr,兩圓內(nèi)含 dRr,。136 、定理:相交兩圓的連心線垂直平分兩圓的公共弦137 、定理:把圓分成 n 等分 (n 3):依次連結(jié)各分點(diǎn)所得的多邊形是這個(gè)圓的內(nèi)接正n 邊形經(jīng)過各分點(diǎn)作圓的切線,以相鄰切線的交點(diǎn)為頂點(diǎn)的多邊形是這個(gè)圓的外切正n 邊形138 、定理:任何正多邊形都有一個(gè)外接圓和一個(gè)內(nèi)切圓,這兩個(gè)圓是同心圓139、正 n 邊形的每個(gè)內(nèi)角都等于:n2 ?180on140、定理:正 n 邊形的半徑和邊心距把正 n 邊形分成 2n 個(gè)全等的直角三角形1411?r n其中: pn
34、為正 n邊形的周長, rn 為弦心距 。、正 n 邊形的面積: Snpn2初中數(shù)學(xué)總結(jié)142、邊長為 a 的正三角形面積: S3 a 24143、弧長計(jì)算公式:n? R 其中 n 為角度數(shù)。l180144、扇形面積公式:S扇形n ? R 21l ? R3602145、圓錐側(cè)面積公式:S=1/2RL(R為圓錐體底面圓的周長 ,L 為圓錐的母線長 )146、圓錐側(cè)面展開圖扇形的圓心角計(jì)算公式: n=r/R*360 (其中 R 為圓錐母線 ,即側(cè)面展開圖的半徑 , r 為圓錐底面半徑 ,n 為扇形圓心角度數(shù) )三、常用數(shù)學(xué)公式公式分類公式表達(dá)式乘法與因式分解a 2b2(ab)(ab)bb24ac;x
35、2bb24ac一元二次方程 ax 2bx c0的解為: x12a2a一元二次方程根與系數(shù)的關(guān)系(韋達(dá)定理) : x1x2b ; x1? x2caa一元二次方程根的判別式:b 24ac0:方程有兩個(gè)相等的實(shí)根0:方程有兩個(gè)不等的實(shí)根0 :方程沒有實(shí)根,有共軛復(fù)數(shù)根12 3 4 5 6nn(n 1) ;213579111315(2n1)n 2;24681012 14(2n)n(n1);某些數(shù)列前 n 項(xiàng)和 1222324252627282n2n(n1)(2n1) ;613233343. 5363n3n2 (n 1) 2 ;4122334 455667n(n 1)n(n1)(n 2) ;3四、基本方
36、法1 、配方法:所謂配方,就是把一個(gè)解析式利用恒等變形的方法,把其中的某些項(xiàng)配成一個(gè)或幾初中數(shù)學(xué)總結(jié)個(gè)多項(xiàng)式n 次冪的形式。通過配方解決數(shù)學(xué)問題的方法叫配方法。其中,用得最多的是配成完全平方式。配方法是數(shù)學(xué)中一種重要的恒等變形的方法,它的應(yīng)用十分非常廣泛,在因式分解、化簡根式、解方程、證明等式和不等式、求函數(shù)的極值和解析式等方面都經(jīng)常用到。2 、因式分解法: 因式分解,就是把一個(gè)多項(xiàng)式化成幾個(gè)整式乘積的形式。因式分解是恒等變形的基礎(chǔ),它作為數(shù)學(xué)的一個(gè)有力工具、一種數(shù)學(xué)方法在代數(shù)、幾何、三角等的解題中起著重要的作用。因式分解的方法有許多,除中學(xué)課本上介紹的提取公因式法、公式法、分組分解法、十字相
37、乘法等外,還有如利用拆項(xiàng)添項(xiàng)、求根分解、換元、待定系數(shù)等等。3 、換元法:換元法,是數(shù)學(xué)中一個(gè)非常重要而且應(yīng)用十分廣泛的解題方法。我們通常把未知數(shù)或變數(shù)稱為元,所謂換元法,就是在一個(gè)比較復(fù)雜的數(shù)學(xué)式子中,用新的變元去代替原式的一個(gè)部分或改造原來的式子,使它簡化,使問題易于解決。4 、判別式法與韋達(dá)定理:一元二次方程: ax 2bxc0 ( a、 b、 c 屬于實(shí)數(shù),且a0 )根的判別,b 24ac ,不僅用來判定根的性質(zhì), 而且作為一種解題方法, 在代數(shù)式變形,解方程 (組),解不等式,研究函數(shù)乃至幾何、三角運(yùn)算中都有非常廣泛的應(yīng)用。韋達(dá)定理除了已知一元二次方程的一個(gè)根,求另一根;已知兩個(gè)數(shù)的
38、和與積,求這兩個(gè)數(shù)等簡單應(yīng)用外,還可以求根的對稱函數(shù),計(jì)論二次方程根的符號,解對稱方程組,以及解一些有關(guān)二次曲線的問題等,都有非常廣泛的應(yīng)用。5 、待定系數(shù)法在解數(shù)學(xué)問題時(shí),若先判斷所求的結(jié)果具有某種確定的形式,其中含有某些待定的系數(shù),而后根據(jù)題設(shè)條件列出關(guān)于待定系數(shù)的等式,最后解出這些待定系數(shù)的值或找到這些待定系數(shù)間的某種關(guān)系,從而解答數(shù)學(xué)問題,這種解題方法稱為待定系數(shù)法。它是中學(xué)數(shù)學(xué)中常用的方法之一。6 、構(gòu)造法:在解題時(shí),我們常常會(huì)采用這樣的方法, 通過對條件和結(jié)論的分析, 構(gòu)造輔助元素,它可以是一個(gè)圖形、一個(gè)方程 (組)、一個(gè)等式、一個(gè)函數(shù)、一個(gè)等價(jià)命題等,架起一座連接條件和結(jié)論的橋梁
39、,從而使問題得以解決,這種解題的數(shù)學(xué)方法,我們稱為構(gòu)造法。運(yùn)用構(gòu)造法解初中數(shù)學(xué)總結(jié)題,可以使代數(shù)、三角、幾何等各種數(shù)學(xué)知識互相滲透,有利于問題的解決。7 、反證法: 反證法是一種間接證法,它是先提出一個(gè)與命題的結(jié)論相反的假設(shè),然后,從這個(gè)假設(shè)出發(fā),經(jīng)過正確的推理,導(dǎo)致矛盾,從而否定相反的假設(shè),達(dá)到肯定原命題正確的一種方法。反證法可以分為歸謬反證法(結(jié)論的反面只有一種 )與窮舉反證法 (結(jié)論的反面不只一種 )。用反證法證明一個(gè)命題的步驟,大體上分為:(1) 反設(shè); (2) 歸謬; (3) 結(jié)論。反設(shè),是反證法的基礎(chǔ),為了正確地作出反設(shè),掌握一些常用的互為否定的表述形式是有必要的,例如:是、不是;存在、不存在;平行于、不平行于;垂直于、不垂直于;等于、不等于;大(小)于、不大 (小 )于;都是、不都是;至少
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 嘉興名人介紹課件
- 暑假學(xué)生社會(huì)實(shí)踐總結(jié)
- 醫(yī)院后勤禮儀培訓(xùn)課件
- 秋人教版八年級物理上冊課件:第六章第1節(jié) 質(zhì) 量
- 結(jié)構(gòu)力學(xué)第2章 結(jié)構(gòu)的幾何構(gòu)造分析
- 助餐配餐員培訓(xùn)課件模板
- 交通運(yùn)輸局培訓(xùn)課件
- 2024年艾滋病知識宣傳工作簡報(bào)
- 2025 小學(xué)一年級數(shù)學(xué)下冊實(shí)踐課(記錄一周天氣)課件
- 城市軌道交通信號基礎(chǔ)設(shè)備維護(hù)課件 項(xiàng)目四 信號通信設(shè)備
- 勞保采購合同范本
- 2025年1月浙江省普通高中學(xué)業(yè)水平考試思想政治試卷(含答案詳解)
- 2025年高壓電工操作證理論全國考試題庫(含答案)
- 2025年新聞?dòng)浾哔Y格證及新聞寫作相關(guān)知識題庫附答案
- 長春財(cái)經(jīng)學(xué)院《計(jì)算機(jī)基礎(chǔ)》2023-2024學(xué)年第一學(xué)期期末試卷
- 廣東省中山市2024-2025學(xué)年八年級上學(xué)期期末考試道德與法治試卷(含答案)
- 2025年湖南理工職業(yè)技術(shù)學(xué)院單招(計(jì)算機(jī))測試模擬題庫必考題
- DB32∕T 5188-2025 經(jīng)成人中心靜脈通路裝置采血技術(shù)規(guī)范
- 主板維修課件
- 2025黑龍江大慶市工人文化宮招聘工作人員7人考試歷年真題匯編帶答案解析
- 2026中央紀(jì)委國家監(jiān)委機(jī)關(guān)直屬單位招聘24人考試筆試模擬試題及答案解析
評論
0/150
提交評論