基于matlab求解非線性規(guī)劃問題.ppt_第1頁
基于matlab求解非線性規(guī)劃問題.ppt_第2頁
基于matlab求解非線性規(guī)劃問題.ppt_第3頁
基于matlab求解非線性規(guī)劃問題.ppt_第4頁
基于matlab求解非線性規(guī)劃問題.ppt_第5頁
免費預覽已結束,剩余18頁可下載查看

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

1、用MATLAB軟件求解,其輸入格式如下: 1.x=quadprog(H,C,A,b); 2.x=quadprog(H,C,A,b,Aeq,beq); 3.x=quadprog(H,C,A,b,Aeq,beq,VLB,VUB); 4.x=quadprog(H,C,A,b, Aeq,beq ,VLB,VUB,X0); 5.x=quadprog(H,C,A,b, Aeq,beq ,VLB,VUB,X0,options); 6.x,fval=quaprog(.); 7.x,fval,exitflag=quaprog(.); 8.x,fval,exitflag,output=quaprog(.);,1、

2、二次型規(guī)劃,解非線性規(guī)劃,例1 min f(x1,x2)=-2x1-6x2+x12-2x1x2+2x22 s.t. x1+x22 -x1+2x22 x10, x20,1、寫成標準形式:,2、 輸入命令: H=1 -1; -1 2; c=-2 ;-6;A=1 1; -1 2;b=2;2; Aeq=;beq=; VLB=0;0;VUB=; x,z=quadprog(H,c,A,b,Aeq,beq,VLB,VUB),3、運算結果為: x =0.6667 1.3333 z = -8.2222,s.t.,1. 首先建立M文件fun.m,定義目標函數F(X): function f=fun(X); f=F

3、(X);,2、一般非線性規(guī)劃,其中X為n維變元向量,G(X)與Ceq(X)均為非線性函數組成的向量,其它變量的含義與線性規(guī)劃、二次規(guī)劃中相同.用Matlab求解上述問題,基本步驟分三步:,3. 建立主程序.非線性規(guī)劃求解的函數是fmincon,命令的基本格式如下: (1) x=fmincon(fun,X0,A,b) (2) x=fmincon(fun,X0,A,b,Aeq,beq) (3) x=fmincon(fun,X0,A,b, Aeq,beq,VLB,VUB) (4) x=fmincon(fun,X0,A,b,Aeq,beq,VLB,VUB,nonlcon) (5)x=fmincon(f

4、un,X0,A,b,Aeq,beq,VLB,VUB,nonlcon,options) (6) x,fval= fmincon(.) (7) x,fval,exitflag= fmincon(.) (8)x,fval,exitflag,output= fmincon(.),輸出極值點,M文件,迭代的初值,參數說明,變量上下限,注意: 1 fmincon函數提供了大型優(yōu)化算法和中型優(yōu)化算法。默認時,若在fun函數中提供了梯度(options參數的GradObj設置為on),并且只有上下界存在或只有等式約束,fmincon函數將選擇大型算法。當既有等式約束又有梯度約束時,使用中型算法。 2 fmin

5、con函數的中型算法使用的是序列二次規(guī)劃法。在每一步迭代中求解二次規(guī)劃子問題,并用BFGS法更新拉格朗日Hessian矩陣。 3 fmincon函數可能會給出局部最優(yōu)解,這與初值X0的選取有關。,1、寫成標準形式: s.t.,2x1+3x2 6 s.t x1+4x2 5 x1,x2 0,例2,2、先建立M-文件 fun3.m: function f=fun3(x); f=-x(1)-2*x(2)+(1/2)*x(1)2+(1/2)*x(2)2,3、再建立主程序youh2.m: x0=1;1; A=2 3 ;1 4; b=6;5; Aeq=;beq=; VLB=0;0; VUB=; x,fval

6、=fmincon(fun3,x0,A,b,Aeq,beq,VLB,VUB),4、運算結果為: x = 0.7647 1.0588 fval = -2.0294,1先建立M文件 fun4.m,定義目標函數: function f=fun4(x); f=exp(x(1) *(4*x(1)2+2*x(2)2+4*x(1)*x(2)+2*x(2)+1);,x1+x2=0 s.t. 1.5+x1x2 - x1 - x2 0 -x1x2 10 0,例3,2再建立M文件mycon.m定義非線性約束: function g,ceq=mycon(x) g=x(1)+x(2);1.5+x(1)*x(2)-x(1)

7、-x(2);-x(1)*x(2)-10;,3主程序youh3.m為: x0=-1;1; A=;b=; Aeq=1 1;beq=0; vlb=;vub=; x,fval=fmincon(fun4,x0,A,b,Aeq,beq,vlb,vub,mycon),3. 運算結果為: x = -1.2250 1.2250 fval = 1.8951,例4,1先建立M-文件fun.m定義目標函數: function f=fun(x); f=-2*x(1)-x(2);,2再建立M文件mycon2.m定義非線性約束: function g,ceq=mycon2(x) g=x(1)2+x(2)2-25;x(1)2

8、-x(2)2-7;,3. 主程序fxx.m為: x0=3;2.5; VLB=0 0;VUB=5 10; x,fval,exitflag,output =fmincon(fun,x0,VLB,VUB,mycon2),4. 運算結果為: x = 4.0000 3.0000 fval =-11.0000 exitflag = 1 output = iterations: 4 funcCount: 17 stepsize: 1 algorithm: 1x44 char firstorderopt: cgiterations: ,應用實例: 供應與選址,某公司有6個建筑工地要開工,每個工地的位置(用平面

9、坐標系a,b表示,距離單位:千米 )及水泥日用量d(噸)由下表給出。目前有兩個臨時料場位于A(5,1),B(2,7),日儲量各有20噸。假設從料場到工地之間均有直線道路相連。 (1)試制定每天的供應計劃,即從A,B兩料場分別向各工地運送多少噸水泥,使總的噸千米數最小。 (2)為了進一步減少噸千米數,打算舍棄兩個臨時料場,改建兩個新的,日儲量各為20噸,問應建在何處,節(jié)省的噸千米數有多大?,(一)、建立模型,記工地的位置為(ai,bi),水泥日用量為di,i=1,6;料場位置為(xj,yj),日儲量為ej,j=1,2;從料場j向工地i的運送量為Xij。,當用臨時料場時決策變量為:Xij, 當不用

10、臨時料場時決策變量為:Xij,xj,yj。,(二)使用臨時料場的情形,使用兩個臨時料場A(5,1),B(2,7).求從料場j向工地i的運送量為Xij,在各工地用量必須滿足和各料場運送量不超過日儲量的條件下,使總的噸千米數最小,這是線性規(guī)劃問題. 線性規(guī)劃模型為:,設X11=X1, X21= X 2, X31= X 3, X41= X 4, X51= X 5, X61= X 6 X12= X 7, X22= X 8, X32= X 9, X42= X 10, X52= X 11, X62= X 12 編寫程序gying1.m:,clear a=1.25 8.75 0.5 5.75 3 7.25;

11、 b=1.25 0.75 4.75 5 6.5 7.75; d=3 5 4 7 6 11; x=5 2; y=1 7; e=20 20; for i=1:6 for j=1:2 aa(i,j)=sqrt(x(j)-a(i)2+(y(j)-b(i)2); end end CC=aa(:,1); aa(:,2); A=1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1;,B=20;20; Aeq=1 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 1

12、0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 1 ; beq=d(1);d(2);d(3);d(4);d(5);d(6); VLB=0 0 0 0 0 0 0 0 0 0 0 0;VUB=; x0=1 2 3 0 1 0 0 1 0 1 0 1; xx,fval=linprog(CC,A,B,Aeq,beq,VLB,VUB,x0),計算結果為:,x = 3.0000 5.0000 0.0000 7.0000 0.0000 1.0000 0.0000 0.0000 4.0000 0.0000 6.0000 10.000

13、0 fval = 136.2275,(三)改建兩個新料場的情形,改建兩個新料場,要同時確定料場的位置(xj,yj)和運送量Xij,在同樣條件下使總噸千米數最小。這是非線性規(guī)劃問題。非線性規(guī)劃模型為:,function f=liaoch(x) a=1.25 8.75 0.5 5.75 3 7.25; b=1.25 0.75 4.75 5 6.5 7.75; d=3 5 4 7 6 11; e=20 20; f1=0; for i=1:6 s(i)=sqrt(x(13)-a(i)2+(x(14)-b(i)2);,f1=s(i)*x(i)+f1; end f2=0; for i=7:12 s(i)=

14、sqrt(x(15)-a(i-6)2+(x(16)-b(i-6)2); f2=s(i)*x(i)+f2; end f=f1+f2;,設 X11=X1, X21= X 2, X31= X 3, X41= X 4, X51= X 5, X61= X 6 X12= X 7, X22= X 8, X32= X 9, X42= X 10, X52= X 11, X62= X 12 x1=X13, y1=X14, x2=X15, y2=X16,(1)先編寫M文件liaoch.m定義目標函數:,(2) 取初值為線性規(guī)劃的計算結果及臨時料場的坐標: x0=3 5 0 7 0 1 0 0 4 0 6 10 5

15、1 2 7; 編寫主程序gying2.m.,clear % x0=2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2; x0=3 5 0 7 0 1 0 0 4 0 6 10 5 1 2 7; A=1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 0 0 0 0; B=20;20; Aeq=1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 0

16、 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0; beq=3 5 4 7 6 11; vlb=zeros(12,1);-inf;-inf;-inf;-inf; vub=; x,fval,exitflag=fmincon(liaoch,x0,A,B,Aeq,beq,vlb,vub),(3) 計算結果為:,x= 3.0000 5.0000 0.0707 7.0000 0 0.9293 0 0 3.9293 0 6.0000 10.0707 6.3875 4.3943 5.7511 7.1867 fval = 105.4626 exitflag = 1,(4) 若修改主程序gying2.m, 取初值為上面的計算結果: x0= 3.0000 5.0000 0.0707 7.0000 0 0.9293 0 0 3.9293 0 6.0000 10.0707 6.3875 4.3943 5.7511 7.1867,得結果為: x=3.0000 5.0000 0.3094 7.0000 0.0108 0.6798 0 0 3.6906 0 5.9892 10.3202 5.5369 4.9194 5.8291 7.2852 fval =103.4760 exit

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論