2017屆高三數(shù)學(xué)復(fù)習(xí)第九篇平面解析幾何第6節(jié)曲線與方程課件理.pptx_第1頁
2017屆高三數(shù)學(xué)復(fù)習(xí)第九篇平面解析幾何第6節(jié)曲線與方程課件理.pptx_第2頁
2017屆高三數(shù)學(xué)復(fù)習(xí)第九篇平面解析幾何第6節(jié)曲線與方程課件理.pptx_第3頁
2017屆高三數(shù)學(xué)復(fù)習(xí)第九篇平面解析幾何第6節(jié)曲線與方程課件理.pptx_第4頁
2017屆高三數(shù)學(xué)復(fù)習(xí)第九篇平面解析幾何第6節(jié)曲線與方程課件理.pptx_第5頁
已閱讀5頁,還剩31頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認(rèn)領(lǐng)

文檔簡介

1、第6節(jié)曲線與方程,知識鏈條完善,考點專項突破,解題規(guī)范夯實,知識鏈條完善 把散落的知識連起來,【教材導(dǎo)讀】 1.f(x0,y0)=0是點P(x0,y0)在曲線f(x,y)=0上的充要條件嗎? 提示:是.如果曲線C的方程是f(x,y)=0,則曲線C的點的坐標(biāo)滿足f(x,y)=0, 以f(x,y)=0的解為坐標(biāo)的點也都在曲線C上,故f(x0,y0)=0是點P(x0,y0)在曲線f(x,y)=0上的充要條件.,提示:不是同一曲線.,知識梳理,1.曲線與方程 一般地,在直角坐標(biāo)系中,如果某曲線C(看作點的集合或適合某種條件的點的軌跡)上的點與一個二元方程f(x,y)=0的實數(shù)解建立了如下的關(guān)系: (1

2、)曲線上點的 都是這個方程的 ; (2)以這個方程的 為坐標(biāo)的點都是曲線上的點. 那么,這個方程叫做 ,這條曲線叫做 . 2.求動點軌跡方程的一般步驟 (1)建立坐標(biāo)系,用(x,y)表示曲線上任意一點M的坐標(biāo); (2)寫出適合條件p的點M的集合P=M|p(M); (3)用坐標(biāo)表示條件p(M),列出方程f(x,y)=0,并化簡; (4)查漏補缺.,坐標(biāo),解,解,曲線的方程,方程的曲線,3.求動點軌跡方程的常用方法 (1)直接法.也叫直譯法,即根據(jù)題目條件,寫出關(guān)于動點的幾何關(guān)系并用坐標(biāo)表示,再進行整理、化簡. (2)定義法.先根據(jù)已知條件判斷動點的軌跡形狀,然后根據(jù)曲線的定義直接求動點的軌跡方程

3、. (3)代入法.也叫相關(guān)點法,其特點是,動點M(x,y)與已知曲線C上的點(x,y)相關(guān)聯(lián),可先用x,y表示x、y,再代入曲線C的方程,即得點M的軌跡方程. (4)參數(shù)法.選取適當(dāng)?shù)膮?shù),分別用參數(shù)表示動點坐標(biāo)(x,y),消去參數(shù),即得其普通方程.,【重要結(jié)論】 1.如果曲線C的方程是f(x,y)=0,那么點P0(x0,y0)在曲線C上的充要條件是f(x0,y0)=0. 2.“曲線C是方程f(x,y)=0的曲線”是“曲線C上的點的坐標(biāo)都是方程f(x,y)=0的解”的充分不必要條件. 3.兩條曲線有交點的充要條件是兩條曲線的方程所組成的方程組有實數(shù)解.,夯基自測,A,C,A,答案:y2=8x(

4、x0),解析:設(shè)M(x,y),則P(2x,2y),代入雙曲線方程得x2-4y2=1. 答案:x2-4y2=1,考點專項突破 在講練中理解知識,考點一,定義法求軌跡方程,反思?xì)w納 定義法求軌跡方程: (1)在利用圓錐曲線的定義求軌跡方程時,若所求的軌跡符合某種圓錐曲線的定義,則根據(jù)曲線的方程,寫出所求的軌跡方程. (2)利用定義法求軌跡方程時,還要看軌跡是否是完整的圓、橢圓、雙曲線、拋物線,如果不是完整的曲線,則應(yīng)對其中的變量x或y進行限制.,答案:(1)y2=4x,考點二,直接法求軌跡方程,(2)當(dāng)|OP|=|OM|時,求l的方程及POM的面積.,反思?xì)w納,直接法求軌跡方程的常見類型及解題策略 (1)題目給出等量關(guān)系,求軌跡方程,可直接代入即可得出方程. (2)題中未明確給出等量關(guān)系,求軌跡方程.可利用已知條件尋找等量關(guān)系,得出方程.,答案: (1)A,(2)已知動點P(x,y)與兩定點M(-1,0),N(1,0)連線的斜率之積等于常數(shù)(0).則動點P的軌跡C的方程為.,相關(guān)點(代入)法求軌跡方程,考點三,反思?xì)w納,相關(guān)點求軌跡方程的一般步驟 (1)設(shè)點:設(shè)動點坐標(biāo)為(x,y),已知軌跡的點的坐標(biāo)為(x1,y1);,(3)代換:將上式關(guān)系代入已知曲線方程,便可得到所求動點的軌跡.,備選例題,【例4】 已知拋物線y2=4p

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論