翻譯-電力系統(tǒng)的電壓穩(wěn)定性研究_第1頁
翻譯-電力系統(tǒng)的電壓穩(wěn)定性研究_第2頁
翻譯-電力系統(tǒng)的電壓穩(wěn)定性研究_第3頁
翻譯-電力系統(tǒng)的電壓穩(wěn)定性研究_第4頁
翻譯-電力系統(tǒng)的電壓穩(wěn)定性研究_第5頁
已閱讀5頁,還剩4頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

本科畢業(yè)設(shè)計(論文)外文翻譯專業(yè)電氣及其自動化所在學院電子信息工程學院二零一二年六月ITERATIVESLIDINGMODECONTROLABSTRACTITERATIVELEARNINGCONTROLILCMETHODSAREDESCRIBEDANDAPPLIEDEVERINCREASINGLYASPOWERFULTOOLSTOCONTROLDYNAMICSNOWADAYSILCSMETHODSINMOSTSTUDIESAREDESCRIBEDASBASEDONREPETITIVEPROCESSFROMTHEBEGINNINGTOTHEENDOFPROCESSORASAKINDOFREPETITIVECONTROLOURNEWLYDESIGNEDCONTROLLERSBASEDONAPARTICULARCASEOFITERATIVELEARNINGCONTROLRADICALLYDIFFERFROMCONVENTIONALMETHODSINATTEMPTINGTOSTABILIZEACLASSOFNONLINEARSYSTEMSINTHISPAPERTWOKINDSOFILCMETHODAREINTRODUCEDINTWOSEPARATESECTIONSINTHEFIRST,OURNEWLYDESIGNEDMETHODSATISFIESTHECONDITIONOFALYAPUNOVSTABILITYTHEOREMINACLASSOFNONLINEARSYSTEMSINWHICHTHEIRSTRUCTURESHAVETHELIPSCHITZPROPERTYINTHESECOND,BYFREEZINGTHETIMEANDMOVINGTOANEWVIRTUALAXIS,CALLEDTHEINDEXAXIS,THISNEWLYDESIGNEDMETHODTRIESTOFINDTHEBESTVALUEFORCONTROLATTHISTIMESTEPANDCANBEUSEDINTWOMODES,ONLINEANDOFFLINEINBOTHMETHODS,BYSATISFYINGTHECONVERGENCECONDITIONOFOURDESIGNEDILC,CLOSEDLOOPSTABILITYISOBTAINEDAUTOMATICALLYKEYWORDSITERATIVELEARNINGCONTROL,NONLINEARSYSTEMS,LYAPUNOVSTABILITYTHEOREMSECTIONAANEWAPPROACHTOSTABILIZEACLASSOFNONLINEARSYSTEMSBYILCMETHODINRECENTDECADES,RESEARCHERSHAVEBEENFOCUSINGEFFORTSONLEARNINGCONTROLSYSTEMS,SOTHATTHISKINDOFCONTROLTECHNIQUEISABLETOIMPROVESYSTEMPERFORMANCEEFFICIENTLYMANYSCIENTISTSWORKINGONITERATIVELEARNINGCONTROLILCHAVEPRESENTEDDIFFERENTLEARNINGCONTROLSCHEMESAMONGTHESE,FORTRACKINGCONTROL,ISTHEITERATIVELEARNINGCONTROLWHICHWASORIGINALLYINTRODUCEDBYARIMOTOIN19841,2THEMAINPURPOSEOFILCISTOFINDACONTROLINPUTITERATIVELY,RESULTINGINTHEPLANTSABILITYTOTRACKTHEGIVENREFERENCESIGNALWITHANOUTPUTTRAJECTORYOVERAFINITETIMEINTERVALCOMMONILCMETHODSUSETHEREPETITIVENATUREOFTHEPROCESSTOIMPROVETHETRACKINGPERFORMANCEPROGRESSIVELYBUTFROMANEWVIEWPOINTONILC,WHICHISREPRESENTEDINTHISPAPER,STABILITYOFACLASSOFNONLINEARSYSTEMSWOULDBEOBTAINEDA1INTRODUCTIONINRECENTDECADES,RESEARCHERSHAVEBEENFOCUSINGEFFORTSONLEARNINGCONTROLSYSTEMS,SOTHATTHISKINDOFCONTROLTECHNIQUEISABLETOIMPROVESYSTEMPERFORMANCEEFFICIENTLYMANYSCIENTISTSWORKINGONITERATIVELEARNINGCONTROLILCHAVEPRESENTEDDIFFERENTLEARNINGCONTROLSCHEMESAMONGTHESE,FORTRACKINGCONTROL,ISTHEITERATIVELEARNINGCONTROLWHICHWASORIGINALLYINTRODUCEDBYARIMOTOIN19841,2THEMAINPURPOSEOFILCISTOFINDACONTROLINPUTITERATIVELY,RESULTINGINTHEPLANTSABILITYTOTRACKTHEGIVENREFERENCESIGNALWITHANOUTPUTTRAJECTORYOVERAFINITETIMEINTERVALCOMMONILCMETHODSUSETHEREPETITIVENATUREOFTHEPROCESSTOIMPROVETHETRACKINGPERFORMANCEPROGRESSIVELYBUTFROMANEWVIEWPOINTONILC,WHICHISREPRESENTEDINTHISPAPER,STABILITYOFACLASSOFNONLINEARSYSTEMSWOULDBEOBTAINEDINSECTIONA2,THEPROBLEMFORMULATIONISPRESENTEDSECTIONA3PRESENTSOURCONTROLLERDESIGNEDMETHODSECTIONA4DISCUSSESOURRESULTSBYSHOWINGAPPLICATIONOFOURALGORITHMTOSOMEDYNAMICSA2PROBLEMFORMULATIONCONSIDERTHESYSTEM1WHEREAREPIECEWISECONTINUOUSINT,ANDFISLOCALLYLIPSCHITZINXOND0,DISAMRNRDOMAINTHATCONTAINSTHEORIGINX0SUPPOSINGTHESYSTEM1ISPERTURBEDASBELOW(2)THEPERTURBATIONCOULDRESULTFROMMODELING,AGING,ORUNCERTAINTIESANDDISTURBANCESWHICHEXISTINANYREALISTICPROBLEMINATYPICALSITUATION,THOUGHTHEPERTURBATIONISNOTKNOWN,SOMEINFORMATIONSUCHASANUPPERBOUNDISAVAILABLEHERETHEPERTURBATIONISREPRESENTEDASANADDITIVETERMONRIGHTHANDSIDEOFTHESTATEEQUATIONUNCERTAINTIESWHICHDONTCHANGETHESYSTEMORDERCANALWAYSBEREPRESENTEDINTHISFORMINGENERALIFAPERTURBATIONISCONSIDEREDASHX,T,ITCANBECLASSIFIEDINTWOTYPESASBELOWHX,T0ISAVANISHINGPERTURBATION,ANDHX,T0ISCALLEDANONVANISHINGPERTURBATIONINTHISPAPER,VANISHINGPERTURBATIONSHAVEBEENINVESTIGATEDFORTHEFUNCTIONGWHEREASTHEPERTURBATIONOFFISCONSIDEREDTOBELIPSCHITZITISNECESSARYTOFULFILLTHESEFOURASSUMPTIONS1THEPERTURBATIONOFGISVANISHINGG0,T0,ANDITSUPPERBOUNDISKNOWNASGX,T2FISPIECEWISECONTINUOUSINTIME,ANDLOCALLYLIPSCHITZIND0,D,IEFX,TNRF0,TMX3F0,T0X0ISANEQUILIBRIUMPOINTOFTHEUNPERTURBEDSYSTEM4THEPERTURBATIONOFF,FX,T,SATISFIESTHELIPSCHITZCONDITIONA3CONTROLLERDESIGNMETHODFORACLOSEDLOOPSYSTEM,THESTATESPACEEQUATIONISGIVENBY1USUALLYSTABILIZATIONOFTHECLOSEDLOOPSYSTEMCANBEPREPAREDBYASUITABLECONTROLLERUX,TASAFUNCTIONOFSTATEXANDTIMETFORSUCHASYSTEM1,BYTHETHEOREMDISCUSSEDBELOW,WECLAIMTHATASTABILIZERINTHEFORMOFAFEEDBACKCONTROLANDALYAPUNOVFUNCTIONFORSTABILIZINGTHESYSTEMAREFOUNDTHEOREMCONSIDERTHECLOSEDLOOPSYSTEM3WITHTHEFOLLOWINGCONTROLLERUKX3WHEREKISAMATRIXWHICHGOVERNEDBYTHEFOLLOWINGLAWMIGX,TK4DQWHEREMISBOUNDOFTHELIPSCHITZCONDITION,IISAUNITMATRIXWITHPROPERDIMENSION,ANDISDQADESIREDNEGATIVEDEFINITEMATRIXWHICHISSELECTEDBYTHEDESIGNERBASEDONTHERATEOFDESCENDINGOFTHELYAPUNOVCRITERIONTHEN3WILLBEASYMPTOTICALLYSTABLEAROUNDTHEORIGINPROOFBYDEFININGTHELYAPUNOVFUNCTION,ASBELOWANDFOLLOWINGTHEPROOFPROCEDURE,ASUITABLECONTROLLERWILLBEDERIVEDASFOLLOWBYUSINGTHESCHWARTZINEQUALITYWEHAVEANDBYIMPLEMENTINGTHELIPSCHITZCONDITIONTHISCHANGESTONOWBYSELECTINGTHECONTROLLERASUKX,THEFOLLOWINGRELATIONISACHIEVEDTHEREFORETHEDESIREDNEGATIVEDEFINITEMATRIXISDQSINCETHEKMATRIXCANBEOBTAINEDFROMTHEFOLLOWINGCASESASBELOWCASE1GISANINVERTIBLEMATRIXINTHISCASEKISOBTAINEDSIMPLYBYTHEFOLLOWINGRELATIONTESTA6CASE2GISAPSEUDOINVERTIBLEMATRIXHEREKCANBEEXPRESSEDBYTESTA7OURALGORITHMISALSORELIABLEFORSYSTEMS1INWHICHTHEINPUTANDOUTPUTSNUMBESAREDIFFERENTIFGX,TISNOTINVERTIBLEORPSEUDOINVERTIBLE,THISMEANSTHATTHEINPUTSINTERACTINTHISCASE,THECONTROLLABILITYPROBLEMMAYARISEATTHISTIMETHEILCMETHODISMOREEFFECTIVECOROLLARYINTHEGENERALCASE,GHASNMDIMENSIONWHERENISTHENUMBEROFSTATESANDMISTHENUMBEROFINPUTSINTHISCASEITERATIVELEARNINGCONTROLCANBEUSEDTOFINDTHEDESIREDKMNMATRIXWHICHSATISFIESRELATION9BYTHEFOLLOWINGMETHODTESTA1WHEREIREPRESENTSTHEITERATIONINDEXANDISTHELEARNINGFACTORMATRIXANDISGIVENBYNMIEITSHOULDBECONSIDEREDTHATTHISTYPEOFCONTROLISUSEDWHENTHESYSTEMANDTHECONTROLLERHAVEDIFFERENTTIMERATESOFPROCESSING,MEANINGTHATTHEDESIREDCONTROLLERWORKSMUCHFASTERTHANTHEPROCESS,POSSIBLYBYUSINGMODERNHIGHRATESOFTWAREREMARKA1ROBUSTNESSWITHRESPECTTOPERTURBATIONSINFANDGCONSIDERFANDGPERTURBEDBYTHETERMSFANDGSUPPOSETHEPERTURBATIONOFFISVANISHING,WHICHSATISFIESTHELINEARGROWTHBOUNDWHEREISANONNEGATIVECONSTANTALSOFORTHEPERTURBATIONOFG,ITISSUPPOSEDTHATITSUPPERBOUNDISKNOWN,THEREFOREITCANBEWRITTENASWHEREISAPOSITIVENUMBER迭代滑??刂普缃?,迭代學習控制(ILC)方法的描述和應(yīng)用日益成為強大的工具用來控制動力學。迭代學習控制方法在大多數(shù)研究方法的基礎(chǔ)上重復(fù)著從開始到結(jié)束的過程,或作為一種描述重復(fù)控制。基于特定情況下的迭代學習控制,我們新設(shè)計的控制器從根本上不同于傳統(tǒng)的方法,它是在嘗試一類非線性系統(tǒng)的穩(wěn)定。本文介紹兩種迭代學習控制方法在這兩個獨立的部分。第一,我們新的設(shè)計方法滿足在一類非線性系統(tǒng)中其結(jié)構(gòu)有李氏的李雅普諾夫穩(wěn)定性定理的條件。第二,通過凍結(jié)的時間和移動到一個新的虛擬軸(稱為指數(shù)軸),在這個新的設(shè)計方法中,試圖找到最好能控制在這個時間步長值上并可用于兩種模式下,上線和離線。這兩種方法都可以滿足我們設(shè)計的迭代學習控制的銜接條件,所以閉環(huán)穩(wěn)定自動獲得。關(guān)鍵詞迭代學習控制,非線性系統(tǒng),李雅普諾夫穩(wěn)定性定理第一部分一種新方法穩(wěn)定的一類非線性系統(tǒng)的迭代學習控制方法11介紹近幾十年來,研究人員一直集中在學習控制系統(tǒng)的努力中,使這種控制技術(shù)能夠有效地提高系統(tǒng)性能。許多致力于迭代學習控制(ILC)工作的科學家們已經(jīng)提出了不同的學習控制方案。其中,跟蹤控制,最初是由ARIMOTO在1984年推出的一種迭代學習控制。迭代學習控制的主要目的是為了找到一個迭代控制輸入,導(dǎo)致了設(shè)備在有限的時間間隔內(nèi)跟蹤給定的輸出軌跡參考信號的能力。常見的迭代學習控制方法采用了過程中的重復(fù)性質(zhì)來逐步提高跟蹤性能。但是,從本文提到的一種新的迭代學習控制觀點來看,可以獲得這一類非線性系統(tǒng)的穩(wěn)定性。12問題制定考慮到系統(tǒng)1(2)由模型、老化或在任何現(xiàn)實中存在的不確定性或干擾都可能導(dǎo)致的擾動問題。在一個典型的情況下,雖然不知道擾動,

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論