基于lms算法的自適應組合濾波器中英文翻譯【完稿】_第1頁
基于lms算法的自適應組合濾波器中英文翻譯【完稿】_第2頁
基于lms算法的自適應組合濾波器中英文翻譯【完稿】_第3頁
基于lms算法的自適應組合濾波器中英文翻譯【完稿】_第4頁
基于lms算法的自適應組合濾波器中英文翻譯【完稿】_第5頁
已閱讀5頁,還剩11頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

COMBINEDADAPTIVEFILTERWITHLMSBASEDALGORITHMSABSTRACTACOMBINEDADAPTIVELTERISPROPOSEDITCONSISTSOFPARALLELLMSBASEDADAPTIVEFIRLTERSANDANALGORITHMFORCHOOSINGTHEBETTERAMONGTHEMASACRITERIONFORCOMPARISONOFTHECONSIDEREDALGORITHMSINTHEPROPOSEDLTER,WETAKETHERATIOBETWEENBIASANDVARIANCEOFTHEWEIGHTINGCOEFCIENTSSIMULATIONSRESULTSCONRMTHEADVANTAGESOFTHEPROPOSEDADAPTIVELTERKEYWORDSADAPTIVELTER,LMSALGORITHM,COMBINEDALGORITHM,BIASANDVARIANCETRADEOFF1INTRODUCTIONADAPTIVELTERSHAVEBEENAPPLIEDINSIGNALPROCESSINGANDCONTROL,ASWELLASINMANYPRACTICALPROBLEMS,1,2PERFORMANCEOFANADAPTIVELTERDEPENDSMAINLYONTHEALGORITHMUSEDFORUPDATINGTHELTERWEIGHTINGCOEFCIENTSTHEMOSTCOMMONLYUSEDADAPTIVESYSTEMSARETHOSEBASEDONTHELEASTMEANSQUARELMSADAPTIVEALGORITHMANDITSMODICATIONSLMSBASEDALGORITHMSTHELMSISSIMPLEFORIMPLEMENTATIONANDROBUSTINANUMBEROFAPPLICATIONS13HOWEVER,SINCEITDOESNOTALWAYSCONVERGEINANACCEPTABLEMANNER,THEREHAVEBEENMANYATTEMPTSTOIMPROVEITSPERFORMANCEBYTHEAPPROPRIATEMODICATIONSSIGNALGORITHMSA8,GEOMETRICMEANLMSGLMS5,VARIABLESTEPSIZELMSVSLMS6,7EACHOFTHELMSBASEDALGORITHMSHASATLEASTONEPARAMETERTHATSHOULDBEDENEDPRIORTOTHEADAPTATIONPROCEDURESTEPFORLMSANDSASTEPANDSMOOTHINGCOEFCIENTSFORGLMSVARIOUSPARAMETERSAFFECTINGTHESTEPFORVSLMSTHESEPARAMETERSCRUCIALLYINUENCETHELTEROUTPUTDURINGTWOADAPTATIONPHASESTRANSIENTANDSTEADYSTATECHOICEOFTHESEPARAMETERSISMOSTLYBASEDONSOMEKINDOFTRADEOFFBETWEENTHEQUALITYOFALGORITHMPERFORMANCEINTHEMENTIONEDADAPTATIONPHASESWEPROPOSEAPOSSIBLEAPPROACHFORTHELMSBASEDADAPTIVELTERPERFORMANCEIMPROVEMENTNAMELY,WEMAKEACOMBINATIONOFSEVERALLMSBASEDFIRLTERSWITHDIFFERENTPARAMETERS,ANDPROVIDETHECRITERIONFORCHOOSINGTHEMOSTSUITABLEALGORITHMFORDIFFERENTADAPTATIONPHASESTHISMETHODMAYBEAPPLIEDTOALLTHELMSBASEDALGORITHMS,ALTHOUGHWEHERECONSIDERONLYSEVERALOFTHEMTHEPAPERISORGANIZEDASFOLLOWSANOVERVIEWOFTHECONSIDEREDLMSBASEDALGORITHMSISGIVENINSECTION2SECTION3PROPOSESTHECRITERIONFOREVALUATIONANDCOMBINATIONOFADAPTIVEALGORITHMSSIMULATIONRESULTSAREPRESENTEDINSECTION42LMSBASEDALGORITHMSLETUSDENETHEINPUTSIGNALVECTORANDVECTOROFTKNKXXX11WEIGHTINGCOEFCIENTSASTHEWEIGHTINGCOEFCIENTSVECTORTNKW110SHOULDBECALCULATEDACCORDINGTO(1)21KKKEEWHEREISTHEALGORITHMSTEP,EISTHEESTIMATEOFTHEEXPECTEDVALUEANDISTHEERRORATTHEINSTANTK,ANDDKISAREFERENCESIGNALDEPENDINGONKTKXWDETHEESTIMATIONOFEXPECTEDVALUEIN1,ONEDENESVARIOUSFORMSOFADAPTIVEALGORITHMSTHELMS,THEGLMS,KKEEKIIKIKAXEXEE010,1ANDTHESA,1,2,5,8THEVSLMSHASTHESAMEFORMASTHELMS,KSIGNBUTINTHEADAPTATIONTHESTEPKISCHANGED6,7THECONSIDEREDADAPTIVELTERINGPROBLEMCONSISTSINTRYINGTOADJUSTASETOFWEIGHTINGCOEFCIENTSSOTHATTHESYSTEMOUTPUT,TRACKSAREFERENCESIGNAL,ASSUMEDASKTKXWY,WHEREISAZEROMEANGAUSSIANNOISEWITHTHEVARIANCE,ANDISKTKKNXWDK2NKWTHEOPTIMALWEIGHTVECTORWIENERVECTORTWOCASESWILLBECONSIDEREDISAKCONSTANTSTATIONARYCASEANDISTIMEVARYINGNONSTATIONARYCASEINNONSTATIONARYCASEKTHEUNKNOWNSYSTEMPARAMETERSIETHEOPTIMALVECTORARETIMEVARIANTITISOFTENKASSUMEDTHATVARIATIONOFMAYBEMODELEDASISTHEZEROMEANRANDOMKKKZW1PERTURBATION,INDEPENDENTONANDWITHTHEAUTOCORRELATIONMATRIXKXNNOTETHATANALYSISFORTHESTATIONARYCASEDIRECTLYFOLLOWSFORIZEGTK2THEWEIGHTINGCOEFCIENTVECTORCONVERGESTOTHEWIENERONE,IFTHECONDITIONFROM021,2ISSATISEDDENETHEWEIGHTINGCOEFCIENTSMISALIGNMENT,13,ITISDUETOBOTHTHEKKWVEFFECTSOFGRADIENTNOISEWEIGHTINGCOEFCIENTSVARIATIONSAROUNDTHEAVERAGEVALUEANDTHEWEIGHTINGVECTORLAGDIFFERENCEBETWEENTHEAVERAGEANDTHEOPTIMALVALUE,3ITCANBEEXPRESSEDAS,2KKKEWVACCORDINGTO2,THEITHELEMENTOFIS3WHEREISTHEWEIGHTINGKWBIASICOEFCIENTBIASANDISAZEROMEANRANDOMVARIABLEWITHTHEVARIANCETHEVARIANCEKI2WBIASEKVIIIIDEPENDSONTHETYPEOFLMSBASEDALGORITHM,ASWELLASONTHEEXTERNALNOISEVARIANCETHUS,IFTHENOISEVARIANCEISCONSTANTORSLOWLYVARYING,ISTIMEINVARIANTFORA2N2PARTICULARLMSBASEDALGORITHMINTHATSENSE,INTHEANALYSISTHATFOLLOWSWEWILLASSUMETHATDEPENDSONLYONTHEALGORITHMTYPE,IEONITSPARAMETERS2ANIMPORTANTPERFORMANCEMEASUREFORANADAPTIVELTERISITSMEANSQUAREDEVIATIONMSDOFWEIGHTINGCOEFCIENTSFORTHEADAPTIVELTERS,ITISGIVENBY,3KTKVEMSDLIM3COMBINEDADAPTIVELTERTHEBASICIDEAOFTHECOMBINEDADAPTIVELTERLIESINPARALLELIMPLEMENTATIONOFTWOORMOREADAPTIVELMSBASEDALGORITHMS,WITHTHECHOICEOFTHEBESTAMONGTHEMINEACHITERATION9CHOICEOFTHEMOSTAPPROPRIATEALGORITHM,INEACHITERATION,REDUCESTOTHECHOICEOFTHEBESTVALUEFORTHEWEIGHTINGCOEFCIENTSTHEBESTWEIGHTINGCOEFCIENTISTHEONETHATIS,ATAGIVENINSTANT,THECLOSESTTOTHECORRESPONDINGVALUEOFTHEWIENERVECTORLETBETHEITHWEIGHTINGCOEFCIENTFORLMSBASEDALGORITHMWITHTHECHOSENQKWI,PARAMETERQATANINSTANTKNOTETHATONEMAYNOWTREATALLTHEALGORITHMSINAUNIEDWAYLMSQ,GLMSQA,SAQLMSBASEDALGORITHMBEHAVIORISCRUCIALLYDEPENDENTONQINEACHITERATIONTHEREISANOPTIMALVALUEQOPT,PRODUCINGTHEBESTPERFORMANCEOFTHEADAPTIVEALGORITHMANALYZENOWACOMBINEDADAPTIVELTER,WITHSEVERALLMSBASEDALGORITHMSOFTHESAMETYPE,BUTWITHDIFFERENTPARAMETERQTHEWEIGHTINGCOEFCIENTSARERANDOMVARIABLESDISTRIBUTEDAROUNDTHE,WITHKWIANDTHEVARIANCE,RELATEDBY4,9QKWBIASI,2Q,4QIIIKWBASK,WHERE4HOLDSWITHTHEPROBABILITYP,DEPENDENTONFOREXAMPLE,FOR2ANDAGAUSSIANDISTRIBUTION,P095TWOSIGMARULEDENETHECONDENCEINTERVALSFOR9,4QKI5QIIIWKD22,THEN,FROM4AND5WECONCLUDETHAT,ASLONGAS,QIKWBAS,KDIIINDEPENDENTLYONQTHISMEANSTHAT,FORSMALLBIAS,THECONDENCEINTERVALS,FORDIFFERENTSQOFTHESAMELMSBASEDALGORITHM,OFTHESAMELMSBASEDALGORITHM,INTERSECTWHEN,ONTHEOTHERHAND,THEBIASBECOMESLARGE,THENTHECENTRALPOSITIONSOFTHEINTERVALSFORDIFFERENTAREFARAPART,ANDTHEYDONOTINTERSECTSQSINCEWEDONOTHAVEAPRIORIINFORMATIONABOUTTHE,WEWILLUSEASPECICQKWBIASI,STATISTICALAPPROACHTOGETTHECRITERIONFORTHECHOICEOFADAPTIVEALGORITHM,IEFORTHEVALUESOFQTHECRITERIONFOLLOWSFROMTHETRADEOFFCONDITIONTHATBIASANDVARIANCEAREOFTHESAMEORDEROFMAGNITUDE,IE4,QIKWBASTHEPROPOSEDCOMBINEDALGORITHMCACANNOWBESUMMARIZEDINTHEFOLLOWINGSTEPSSTEP1CALCULATEFORTHEALGORITHMSWITHDIFFERENTFROMTHEPREDENEDSETQI,SQ,2QQISTEP2ESTIMATETHEVARIANCEFOREACHCONSIDEREDALGORITHM2QSTEP3CHECKIFINTERSECTFORTHECONSIDEREDALGORITHMSSTARTFROMANALGORITHMWITHKDILARGESTVALUEOFVARIANCE,ANDGOTOWARDTHEONESWITHSMALLERVALUESOFVARIANCESACCORDINGTO4,5ANDTHETRADEOFFCRITERION,THISCHECKREDUCESTOTHECHECKIF6QLMLIMIQKW2,ISSATISED,WHERE,ANDTHEFOLLOWINGRELATIONHOLDSQLQQHLQHMH,22IFNOINTERSECTLARGEBIASCHOOSETHEALGORITHMWITHLARGESTVALUEOFVARIANCEIFTHEKDIINTERSECT,THEBIASISALREADYSMALLSO,CHECKANEWPAIROFWEIGHTINGCOEFCIENTSOR,IFITHATISTHELASTPAIR,JUSTCHOOSETHEALGORITHMWITHTHESMALLESTVARIANCEFIRSTTWOINTERVALSTHATDONOTINTERSECTMEANTHATTHEPROPOSEDTRADEOFFCRITERIONISACHIEVED,ANDCHOOSETHEALGORITHMWITHLARGEVARIANCESTEP4GOTOTHENEXTINSTANTOFTIMETHESMALLESTNUMBEROFELEMENTSOFTHESETQISL2INTHATCASE,ONEOFTHESHOULDSQPROVIDEGOODTRACKINGOFRAPIDVARIATIONSTHELARGESTVARIANCE,WHILETHEOTHERSHOULDPROVIDESMALLVARIANCEINTHESTEADYSTATEOBSERVETHATBYADDINGFEWMOREBETWEENTHESETWOEXTREMES,ONEMAYSLIGHTLYIMPROVETHETRANSIENTBEHAVIOROFTHEALGORITHMNOTETHATTHEONLYUNKNOWNVALUESIN6ARETHEVARIANCESINOURSIMULATIONSWEESTIMATEASIN42Q,726750/1KWMEDIANIIQFORK1,2,LAND2ZTHEALTERNATIVEWAYISTOESTIMATEASN,F(xiàn)ORXI0(8)TIE122EXPRESSIONSRELATINGANDINSTEADYSTATE,FORDIFFERENTTYPESOFLMSBASEDALGORITHMS,2NQAREKNOWNFROMLITERATUREFORTHESTANDARDLMSALGORITHMINSTEADYSTATE,ANDARE2N2QRELATED,3NOTETHATANYOTHERESTIMATIONOFISVALIDFORTHEPROPOSEDFILTER2NQ2QCOMPLEXITYOFTHECADEPENDSONTHECONSTITUENTALGORITHMSSTEP1,ANDONTHEDECISIONALGORITHMSTEP3CALCULATIONOFWEIGHTINGCOEFFICIENTSFORPARALLELALGORITHMSDOESNOTINCREASETHECALCULATIONTIME,SINCEITISPERFORMEDBYAPARALLELHARDWAREREALIZATION,THUSINCREASINGTHEHARDWAREREQUIREMENTSTHEVARIANCEESTIMATIONSSTEP2,NEGLIGIBLYCONTRIBUTETOTHEINCREASEOFALGORITHMCOMPLEXITY,BECAUSETHEYAREPERFORMEDATTHEVERYBEGINNINGOFADAPTATIONANDTHEYAREUSINGSEPARATEHARDWAREREALIZATIONSSIMPLEANALYSISSHOWSTHATTHECAINCREASESTHENUMBEROFOPERATIONSFOR,ATMOST,NL1ADDITIONSANDNL1IFDECISIONS,ANDNEEDSSOMEADDITIONALHARDWAREWITHRESPECTTOTHECONSTITUENTALGORITHMS4ILLUSTRATIONOFCOMBINEDADAPTIVEFILTERCONSIDERASYSTEMIDENTIFICATIONBYTHECOMBINATIONOFTWOLMSALGORITHMSWITHDIFFERENTSTEPSHERE,THEPARAMETERQIS,IE10/,21QQTHEUNKNOWNSYSTEMHASFOURTIMEINVARIANTCOEFFICIENTS,ANDTHEFIRFILTERSAREWITHN4WEGIVETHEAVERAGEMEANSQUAREDEVIATIONAMSDFORBOTHINDIVIDUALALGORITHMS,ASWELLASFORTHEIRCOMBINATION,FIG1ARESULTSAREOBTAINEDBYAVERAGINGOVER100INDEPENDENTRUNSTHEMONTECARLOMETHOD,WITH01THEREFERENCEDKISCORRUPTEDBYAZEROMEANUNCORRELATEDGAUSSIANNOISEWITH001ANDSNR15DB,ANDIS175IN2NTHEFIRST30ITERATIONSTHEVARIANCEWASESTIMATEDACCORDINGTO7,ANDTHECAPICKEDTHEWEIGHTINGCOEFFICIENTSCALCULATEDBYTHELMSWITHASPRESENTEDINFIG1A,THECAFIRSTUSESTHELMSWITHANDTHEN,INTHESTEADYSTATE,THELMSWITH/10NOTETHEREGION,BETWEENTHE200THAND400THITERATION,WHERETHEALGORITHMCANTAKETHELMSWITHEITHERSTEPSIZE,INDIFFERENTREALIZATIONSHERE,PERFORMANCEOFTHECAWOULDBEIMPROVEDBYINCREASINGTHENUMBEROFPARALLELLMSALGORITHMSWITHSTEPSBETWEENTHESETWOEXTREMSOBSERVEALSOTHAT,INSTEADYSTATE,THECADOESNOTIDEALLYPICKUPTHELMSWITHSMALLERSTEPTHEREASONISINTHESTATISTICALNATUREOFTHEAPPROACHCOMBINEDADAPTIVEFILTERACHIEVESEVENBETTERPERFORMANCEIFTHEINDIVIDUALALGORITHMS,INSTEADOFSTARTINGANITERATIONWITHTHECOEFFICIENTVALUESTAKENFROMTHEIRPREVIOUSITERATION,TAKETHEONESCHOSENBYTHECANAMELY,IFTHECACHOOSES,INTHEKTHITERATION,THEWEIGHTINGCOEFFICIENTVECTOR,THENPWEACHINDIVIDUALALGORITHMCALCULATESITSWEIGHTINGCOEFFICIENTSINTHEK1THITERATIONACCORDINGTOKPKXEEW219FIG1AVERAGEMSDFORCONSIDEREDALGORITHMSFIG2AVERAGEMSDFORCONSIDEREDALGORITHMSFIG1BSHOWSTHISIMPROVEMENT,APPLIEDONTHEPREVIOUSEXAMPLEINORDERTOCLEARLYCOMPARETHEOBTAINEDRESULTS,FOREACHSIMULATIONWECALCULATEDTHEAMSDFORTHEFIRSTLMSITWASAMSD002865,FORTHESECONDLMS/10ITWASAMSD020723,FORTHECACOLMSITWASAMSD002720ANDFORTHECAWITHMODIFICATION9ITWASAMSD0023715SIMULATIONRESULTSTHEPROPOSEDCOMBINEDADAPTIVEFILTERWITHVARIOUSTYPESOFLMSBASEDALGORITHMSISIMPLEMENTEDFORSTATIONARYANDNONSTATIONARYCASESINASYSTEMIDENTIFICATIONSETUPPERFORMANCEOFTHECOMBINEDFILTERISCOMPAREDWITHTHEINDIVIDUALONES,THATCOMPOSETHEPARTICULARCOMBINATIONINALLSIMULATIONSPRESENTEDHERE,THEREFERENCEDKISCORRUPTEDBYAZEROMEANUNCORRELATEDGAUSSIANNOISEWITHANDSNR15DBRESULTSAREOBTAINEDBYAVERAGINGOVER100102NINDEPENDENTRUNS,WITHN4,ASINTHEPREVIOUSSECTIONATIMEVARYINGOPTIMALWEIGHTINGVECTORTHEPROPOSEDIDEAMAYBEAPPLIEDTOTHESAALGORITHMSINANONSTATIONARYCASEINTHESIMULATION,THECOMBINEDFILTERISCOMPOSEDOUTOFTHREESAADAPTIVEFILTERSWITHDIFFERENTSTEPS,IEQ,/2,/802THEOPTIMALVECTORSISGENERATEDACCORDINGTOTHEPRESENTEDMODELWITH,ANDWITH2INTHE12ZFIRST30ITERATIONSTHEVARIANCEWASESTIMATEDACCORDINGTO7,ANDCATAKESTHECOEFFICIENTSOFSAWITHSA1FIGURE2ASHOWSTHEAMSDCHARACTERISTICSFOREACHALGORITHMINSTEADYSTATETHECADOESNOTIDEALLYFOLLOWTHESA3WITH/8,BECAUSEOFTHENONSTATIONARYPROBLEMNATUREANDARELATIVELYSMALLDIFFERENCEBETWEENTHECOEFFICIENTVARIANCESOFTHESA2ANDSA3HOWEVER,THISDOESNOTAFFECTTHEOVERALLPERFORMANCEOFTHEPROPOSEDALGORITHMAMSDFOREACHCONSIDEREDALGORITHMWASAMSD04129SA1,AMSD04257SA2,/2,AMSD16011SA3,/8ANDAMSD02696COMBBCOMPARISONWITHVSLMSALGORITHM6INTHISSIMULATIONWETAKETHEIMPROVEDCA9FROM31,ANDCOMPAREITSPERFORMANCEWITHTHEVSLMSALGORITHM6,INTHECASEOFABRUPTCHANGESOFOPTIMALVECTORSINCETHECONSIDEREDVSLMSALGORITHM6UPDATESITSSTEPSIZEFOREACHWEIGHTINGCOEFFICIENTINDIVIDUALLY,THECOMPARISONOFTHESETWOALGORITHMSISMEANINGFULALLTHEPARAMETERSFORTHEIMPROVEDCAARETHESAMEASIN31FORTHEVSLMSALGORITHM6,THERELEVANTPARAMETERVALUESARETHECOUNTEROFSIGNCHANGEM011,ANDTHECOUNTEROFSIGNCONTINUITYM17FIGURE2BSHOWSTHEAMSDFORTHECOMPAREDALGORITHMS,WHEREONECANOBSERVETHEFAVORABLEPROPERTIESOFTHECA,ESPECIALLYAFTERTHEABRUPTCHANGESNOTETHATABRUPTCHANGESAREGENERATEDBYMULTIPLYINGALLTHESYSTEMCOEFFICIENTSBY1ATTHE2000THITERATIONFIG2BTHEAMSDFORTHEVSLMSWASAMSD00425,WHILEITSVALUEFORTHECACOLMSWASAMSD00323FORACOMPLETECOMPARISONOFTHESEALGORITHMSWECONSIDERNOWTHEIRCALCULATIONCOMPLEXITY,EXPRESSEDBYTHERESPECTIVEINCREASEINNUMBEROFOPERATIONSWITHRESPECTTOTHELMSALGORITHMTHECAINCREASESTHENUMBEROFREQURESOPERATIONSFORNADDITIONSANDNIFDECISIONSFORTHEVSLMSALGORITHM,THERESPECTIVEINCREASEIS3NMULTIPLICATIONS,NADDITIONS,ANDATLEAST2NIFDECISIONSTHESEVALUESSHOWTHEADVANTAGEOFTHECAWITHRESPECTTOTHECALCULATIONCOMPLEXITY6CONCLUSIONCOMBINATIONOFTHELMSBASEDALGORITHMS,WHICHRESULTSINANADAPTIVESYSTEMTHATTAKESTHEFAVORABLEPROPERTIESOFTHESEALGORITHMSINTRACKINGPARAMETERVARIATIONS,ISPROPOSEDINTHECOURSEOFADAPTATIONPROCEDUREITCHOOSESBETTERALGORITHMS,ALLTHEWAYTOTHESTEADYSTATEWHENITTAKESTHEALGORITHMWITHTHESMALLESTVARIANCEOFTHEWEIGHTINGCOEFFICIENTDEVIATIONSFROMTHEOPTIMALVALUEACKNOWLEDGEMENTTHISWORKISSUPPORTEDBYTHEVOLKSWAGENSTIFTUNG,FEDERALREPUBLICOFGERMANY基于LMS算法的自適應組合濾波器摘要提出了一種自適應組合濾波器。它由并行LMS的自適應FIR濾波器和一個具有更好的選擇性的算法組成。作為正在研究中的濾波器算法比較標準,我們采取偏差和加權(quán)系數(shù)之間的方差比。仿真結(jié)果證實了提出的自適應濾波器的優(yōu)點。關(guān)鍵詞自適應濾波器;LMS算法;組合算法;偏差和方差權(quán)衡1、緒論自適應濾波器已在信號處理和控制,以及許多實際問題1,2的解決當中得到了廣泛的應用自適應濾波器的性能主要取決于濾波器所使用的算法的加權(quán)系數(shù)的更新。最常用的自適應系統(tǒng)對那些基于最小均方(LMS)自適應算法及其改進(基于LMS的算法)。LMS算法是非常簡便,易于實施,具有廣泛的用途13。但是,因為它并不總是收斂在一個可接受的方式,所以有很多的嘗試,以對其性能做適當改進符號算法(SA)的8,幾何平均LMS算法(GLMS)5,變步長LMS(最小均方比)算法6,7。每一種基于LMS的算法都至少有一個參數(shù)在適應過程(LMS算法和符號算法,加強和GLMS平滑系數(shù),各種參數(shù)對變步長LMS算法的影響)中被預先定義。這些參數(shù)的影響關(guān)鍵在兩個適應階段瞬態(tài)和穩(wěn)態(tài)濾波器的輸出。這些參數(shù)的選擇主要是基于一種算法質(zhì)量的權(quán)衡中所提到的適應性能。我們提出了一個自適應濾波器的性能改善的方法。也就是說,我們提出了幾個基于LMS算法的不同參數(shù)的FIR濾波器,并提供不同的適應階段選擇最合適的算法標準。這種方法可以適用于所有的LMS的算法,雖然我們在這里只考慮其中幾個。本文的結(jié)構(gòu)如下,作者認為的LMS的算法概述載于第2節(jié),第3節(jié)提出了自適應算法的改進和組合標準,仿真結(jié)果在第4節(jié)。2、基于LMS的算法讓我們定義輸入信號向量和矢量加權(quán)系數(shù)為TKNKXXX11權(quán)重系數(shù)向量計算應根據(jù)TNKWK110(1)21KKKXEEW其中為算法步長,E是預期值的估計。在中,常數(shù)K表式誤KTKXWD差,是一個參考信號。根據(jù)(1)中不同的預期值估計在,我們可以得出一種各種KD形式的自適應算法的定義LMS,KKE,1,2,5,8變KIIIKKAXEAXEEGLMS010,1KKKESIGNESA步長LMS算法和基本LMS算法具有相同的形式,但在適應過程中步長(K)是變化的6,7。正在研究中的自適應濾波問題在于嘗試調(diào)整權(quán)重系數(shù),使系統(tǒng)的輸出跟蹤參考信號,中是一個零均值與方差的高斯噪聲,KTKXWYKTKKNXWD2N是最佳權(quán)向量(維納向量)。我們考慮兩種情況是一個常數(shù)(固定的情WK況下),隨時間變化(非平穩(wěn)的情況下)。在非平穩(wěn)情況下,未知系統(tǒng)參數(shù)(即K最佳載體)是隨時間變化的。我們假設(shè)變量可以建立模型為,KKKKKZ1它是隨機獨立的零均值,依賴于和自相關(guān)矩陣。注意分析KXNIZEGTK2直接服從,如果1,2的條件是滿足的,那么加權(quán)系數(shù)向量收斂于維納解。02Z定義加權(quán)錯位系數(shù),13,。是因為這兩個梯度噪聲(加權(quán)系數(shù)的平KKWV均值左右的變化)和加權(quán)矢量滯后(平均及最佳值的差額)的影響,3。它可以表示為(2)KKKE根據(jù)(2),是KV(3)是加權(quán)系數(shù)的偏差,與方差是零均值的隨機變量差,它取決KWBIASIKI2于LMS的算法類型,以及外部噪聲方差。因此,如果噪聲方差為常數(shù)或是緩慢變2N化的,為某一特定的基于LMS時間不變的算法。在這個意義上說,在后面的分析2中我們將假定只依賴算法類型,及其參數(shù)。自適應濾波器的一個重要性能衡量標準是其均方差(MSD)的加權(quán)系數(shù)。對于自適應濾波器,它被賦值,33、組合自適應濾波器合并后的自適應濾波器的基本思想是在兩個或兩個以上自適應LMS算法并行實現(xiàn)與每個迭代之間的最佳選擇,9。在每次迭代中選擇最合適的算法,選擇最佳的加權(quán)系數(shù)值。最好的加權(quán)系數(shù)是1,即在給定的時刻,向相應的維納矢量值最接近。讓KBIASWEIIIIKTKVEMSDLIM是以基本LMS算法為基礎(chǔ)的第I個加權(quán)系數(shù),在瞬間選擇參數(shù)Q和系數(shù)K。注QKWI,意,現(xiàn)在我們可以在一個統(tǒng)一的處理方式(LMSQ,GLMSQA,SAQ)下?;贚MS算法的行為主要依賴于Q,在每個迭代中有一個最佳值,生產(chǎn)的最佳表OPT現(xiàn)的自適應算法?,F(xiàn)在分析最小均方與一些基于相同類型的算法相結(jié)合的自適應濾波器,但參數(shù)Q是不同的。加權(quán)系數(shù)周圍分布隨機變量和和方差,相關(guān)4,9。KWIQKBIASI,2Q(4)IIIWQ,(4)中的概率P依賴的值例如2的高斯分布,P095(兩個規(guī)則)。置信區(qū)間的定義9,4QKI(5)QIQIIKKD2,2,接著,從(4)式到(5)式我們認為只要關(guān)于IWBASKDII獨立Q,這意味著,對于小偏差,置信區(qū)間對同一的LMS的算法是不同的,而對同一的LMS的算法則相交。另一方面,當偏置變大,然后中央位置的不同間隔距離很大,而且他們不相交。由于我們對有關(guān)信息沒有先驗知識,我們將使用一種特定的統(tǒng)計學QKWBIASI,方法得到的標準,即自適應算法選擇的Q值問題。這個標準的平衡狀態(tài),從或同一個數(shù)量級的,即。4,QIKBAS提出的聯(lián)合算法CA現(xiàn)在可以被總結(jié)為下面的步驟第1步從不同預定義設(shè)置中為算法計算。,2QIQKWI,第2步估計每個算法的方差。Q第3步檢查是否相交對于算法。從一個最大的差異值算法走向與差異較小KDI的值。根據(jù)(4),(5)和取舍的標準,如果下式成立那么將會減少這個檢查(6)QLMLIMIKW2,當和以下關(guān)系成立QQLM,QQHLQHH,22如果沒有相交(大偏差)選擇具有最大的方差的值算法。如果相交,偏差已KDI經(jīng)很小。因此,檢查了一對新的加權(quán)系數(shù),或者,如果是最后一對,只選擇具有KDI最小方差的算法。首先兩個區(qū)間不相交意味著實現(xiàn)了取舍標準,并選擇最大方差算法。第4步轉(zhuǎn)到下一個瞬間。元素的集合Q中最小的數(shù)L2。在這種情況下,應提供良好的跟蹤快速變化(最大的差異),而其他應提供小的方差的穩(wěn)定狀態(tài)。通過增加更多的觀察,這兩個極端之間,我們可以稍微改進算法的瞬態(tài)行為。需要注意的是,只有未知值6的差異。在仿真中我們估計4式2Q(7)26750/1KWMEDIANIIQ當K1,2,L和2Z替代的方法是估計為N(8)有關(guān)表達式和在穩(wěn)定狀態(tài)為LMS算法的不同類型,從已知文獻中可以看出。2NQ對于標準的LMS算法在穩(wěn)定狀態(tài),和是相關(guān)的。,3需要注意的是,2NQ2NQ任何其他估計對于濾波器來說是有效的。2QCA的復雜性取決于組成算法(第1步),并在決策算法(步驟3)。加權(quán)系數(shù)的計算并未使并行算法增加計算時間,因為它是由硬件實現(xiàn)并行執(zhí)行的,從而增加了硬件要求。方差估計(步驟2),忽略了有助于提高算法的復雜性,因為他們是剛剛開始的時候,他們正在使用單獨適應硬件實現(xiàn)。簡單的分析表明,在CA增加最多的操作步驟,添加了N(L1和NL1IF決定增補,而且需要添加一些硬件以滿足組成算法。4、組合自適應濾波器舉例考慮由兩個不同步驟的LMS算法相結(jié)合的系統(tǒng)鑒定。在這里,參數(shù)Q是,即。10/,21QQ未知的系統(tǒng)有四個時間不變系數(shù),而且FIR濾波器的N4。我們給個人平均為方差算法(AMSD),以及它們的結(jié)合,如圖1(A)所示。結(jié)果,獲得了平均超過100(蒙特卡羅方法)個獨立的運行,其中01。它引用了未知損壞不相關(guān)零均值高斯噪聲,其中001,SNR15DB,175在最初的30次迭代的方差估2N計根據(jù)式(7)和CA的加權(quán)來計算LMS的系數(shù)。圖1(A)中提出,第一次使用的CA與的LMS,然后在穩(wěn)定狀態(tài),與/10的LMS。需要注意的是第200和第400迭代,該LMS算法可以采取任何步長根據(jù)不同的認識。在這里,CA將通過增加計算量與并行LMS算法都得到改善,同時還認為,在穩(wěn)定狀態(tài)下,CA不能理想的接近小步長的LMS算法,原因是該方法的統(tǒng)計特性。組合自適應濾波器能夠達到更好的性能如果該獨立算法能勝過他們以往所采取的系數(shù)值迭代,即采取由CA所選擇的那些值。也就是說,如果CA選擇,那么在K次迭代中,加權(quán)系數(shù)向量,然后根據(jù)每一個獨立的算法計算出加權(quán)系數(shù)在(K1)次PW迭代0,12IXFORETI(9)KPKXEEW21圖1快速平均算法圖2快速平均算法在前面的示例應用中,圖1(B)顯示了這種改進。為了比較清楚地取得成果,為每次仿真計算了AMSD,對于第一個LMS()是AMSD002865,第二的LMS(/10)是AMSD020723,對CA(COLMS)是AMSD002720,還有與改進的式(9)是AMSD002371。6、仿真結(jié)果提出的基于LMS的算法不同類型的自適應組合濾波器是實行固定和非平穩(wěn)情況,合并后的過濾系統(tǒng)識別。比較聯(lián)合濾波器性能,以組成特定的組合。這里所有的仿真,DK由零均值高斯噪聲損壞無關(guān)AND,SNR15DB結(jié)果,102N獲得了平均超過100個獨立運行的N4,如上一節(jié)。(A)優(yōu)化加權(quán)時變向量提出的想法可能被應用到SA算法的非平穩(wěn)情況。在仿真中,組合濾波器組由3個不同的SA自適應濾波器步驟組成,即自適應濾波器Q,/2,/802根據(jù)最優(yōu)向量生成的模型,2N的前30次迭012Z代的方差估計根據(jù)式(7),CA與SA系數(shù)(SA1)。圖2(A)顯示了每個算法的AMSD特點。在穩(wěn)定狀態(tài)的CA不理想的遵循/8SA3,因為問題的性質(zhì)和非平穩(wěn)之間的SA2和SA3系數(shù)差異相對較小,但這并不影響該算法的整體性能。每個算法AMSD考慮是AMSD04129(SA1,),AMSD04257(SA2,/2),AMSD16011(SA3,/8)和AMSD02696。(B)比較與VSLMS算法6在仿真中,我們改進仿真由31節(jié)中的(9)式,并在最佳載體突然變化的情況下比較其與LMS算法的性能6。我認為比較LMS算法6,其加權(quán)系數(shù)為每個單獨的步長進行了更新,這兩個算法的比較是有意義的。所有對CA參數(shù)的改進和31是相同的,對VSLMS算法6,有關(guān)的參數(shù)值是變化的且具有符號的連續(xù)性,M011,M17。圖2(B)顯示,特別是在突然改變了算法的比較之后,我們可以觀察到CA的有利特性,AMSD。但要注意的是,突然的變化使系統(tǒng)乘以1到2000次迭代(圖2(B)。這對VSAMSD是AMSD00425,而在CA(COLMS)中AMSD00323。與一個完整的這些算法相比,我們認為現(xiàn)在的計算復雜度增加了。這表明了各自增長了LMS算法。CA增加了對N的補充和NIF的討論對于VSLMS算法,其增加了3N乘法,N的添加,以及決定至少2NIF。這些值表明,CA雖然計算復雜但具有其獨特的優(yōu)勢。8、結(jié)論組合LMS算法,在自適應系統(tǒng)中將這些參數(shù)變化的跟蹤與算法的良好性能結(jié)果相結(jié)合,是自適應過程中選擇的更好的算法,一直到穩(wěn)定狀態(tài)時需要從最優(yōu)值與最小方差算法的加權(quán)系數(shù)的偏差。您好,為你提供優(yōu)秀的畢業(yè)論文參考資料,請您刪除以下內(nèi)容,O_O謝謝ALARGEGROUPOFTEAMERCHANTSONCAMELSANDHORSESFROMNORTHWESTCHINASSHAANXIPROVINCEPASSTHROUGHASTOPONTHEANCIENTSILKROAD,GANSUSZHANGYECITYDURINGTHEIRJOURNEYTOKAZAKHSTAN,MAY5,2015THECARAVAN,CONSISTINGOFMORETHAN100CAMELS,THREEHORSEDRAWNCARRIAGESANDFOURSUPPORTVEHICLES,STARTEDTHETRIPFROMJINGYANGCOUNTYINSHAANXIONSEPT19,2014ITWILLPASSTHROUGHGANSUPROVINCEANDXINJIANGUYGURAUTONOMOUSREGION,ANDFINALLYARRIVEINALMATY,FORMERLYKNOWNASALMAATA,THELARGESTCITYINKAZAKHSTAN,ANDDUNGANINZHAMBYLPROVINCETHETRIPWILLCOVERABOUT15,000KILOMETERSANDTAKETHECARAVANMORETHANONEYEARTOCOMPLETETHECARAVANISEXPECTEDTORETURNTOJINGYANGINMARCH2016THENTHEYWILLCOMEBACK,CARRYINGSPECIALTYPRODUCTSFROMKAZAKHSTANASMALLARTTROUPEFOUNDEDSIXDECADESAGOHASGROWNINTOAHOUSEHOLDNAMEINTHEINNERMONGOLIAAUTONOMOUSREGIONINTHE1950S,ULANMUQIRARTTROUPEWASCREATEDBYNINEYOUNGMUSICIANS,WHOTOUREDREMOTEVILLAGESONHORSESANDPERFORMEDTRADITIONALMONGOLIANMUSICANDDANCESFORNOMADICFAMILIESTHE54YEAROLDWASBORNINTONGLIAO,INEASTERNINNERMONGOLIAANDJOINEDTHETROUPEIN1975HESAYSTHEREARE74BRANCHTROUPESACROSSINNERMONGOLIAANDACTORSGIVEAROUND100SHOWSEVERYYEARTOLOCA

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論