版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
1、初中常見(jiàn)輔助線作法任何幾何題目都需分析題目條件和結(jié)論找到解題思路,本講從常見(jiàn)的條件和結(jié)論出發(fā)說(shuō)明50種輔助線作法,分三角形部分、四邊形部分、解直角三角形部分、圓。每種輔助線作法均配備了例題和練習(xí)。三角形部分1在利用三角形三邊關(guān)系證明線段不等關(guān)系時(shí),如果直接證不出來(lái),可連結(jié)兩點(diǎn)或延長(zhǎng)某邊構(gòu)造三角形,使結(jié)論中出現(xiàn)的線段在一個(gè)或幾個(gè)三角形中,再利用三邊關(guān)系定理及不等式性質(zhì)證題.例:如圖,已知D、E為ABC內(nèi)兩點(diǎn),求證:ABACBDDECE. 證法(一):將DE向兩邊延長(zhǎng),分別交AB、AC于M、N 在AMN中, AM ANMDDENE 在BDM中,MBMDBD 在CEN中,CNNECE 得AMANMB
2、MDCNNEMDDENEBDCEABACBDDECE證法(二)延長(zhǎng)BD交AC于F,延長(zhǎng)CE交BF于G,在ABF和GFC和GDE中有,ABAFBDDGGFGFFCGECEDGGEDE有ABAFGFFCDGGEBDDGGFGECEDEABACBDDECE注意:利用三角形三邊關(guān)系定理及推論證題時(shí),常通過(guò)引輔助線,把求證的量(或與求證有關(guān)的量)移到同一個(gè)或幾個(gè)三角形中去然后再證題.練習(xí):已知:如圖P為ABC內(nèi)任一點(diǎn), 求證:(ABBCAC)PAPBPCABBCAC2.在利用三角形的外角大于任何和它不相鄰的內(nèi)角證明角的不等關(guān)系時(shí),如果直接證不出來(lái),可連結(jié)兩點(diǎn)或延長(zhǎng)某邊,構(gòu)造三角形,使求證的大角在某個(gè)三角
3、形外角的位置上,小角處在內(nèi)角的位置上,再利用外角定理證題.例:已知D為ABC內(nèi)任一點(diǎn),求證:BDCBAC證法(一):延長(zhǎng)BD交AC于E,BDC是EDC 的外角,BDCDEC同理:DECBACBDCBAC證法(二):連結(jié)AD,并延長(zhǎng)交BC于FBDF是ABD的外角,BDFBAD同理CDFCADBDFCDFBADCAD即:BDCBAC3.有角平分線時(shí)常在角兩邊截取相等的線段,構(gòu)造全等三角形. 例:已知,如圖,AD為ABC的中線且1 = 2,3 = 4,求證:BECFEF證明:在DA上截取DN = DB,連結(jié)NE、NF,則DN = DC 在BDE和NDE中,DN = DB1 = 2ED = EDBDE
4、NDEBE = NE同理可證:CF = NF在EFN中,ENFNEFBECFEF4. 有以線段中點(diǎn)為端點(diǎn)的線段時(shí),常加倍延長(zhǎng)此線段構(gòu)造全等三角形.例:已知,如圖,AD為ABC的中線,且1 = 2,3 = 4,求證:BECFEF證明:延長(zhǎng)ED到M,使DM = DE,連結(jié)CM、FMBDE和CDM中, BD = CD1 = 5ED = MDBDECDMCM = BE又1 = 2,3 = 4 123 4 = 180o3 2 = 90o即EDF = 90oFDM = EDF = 90oEDF和MDF中ED = MDFDM = EDFDF = DFEDFMDFEF = MF在CMF中,CFCM MFBEC
5、FEF(此題也可加倍FD,證法同上) 5. 在三角形中有中線時(shí),常加倍延長(zhǎng)中線構(gòu)造全等三角形.例:已知,如圖,AD為ABC的中線,求證:ABAC2AD證明:延長(zhǎng)AD至E,使DE = AD,連結(jié)BEAD為ABC的中線BD = CD在ACD和EBD中BD = CD 1 = 2AD = EDACDEBDABE中有ABBEAEABAC2AD6.截長(zhǎng)補(bǔ)短作輔助線的方法截長(zhǎng)法:在較長(zhǎng)的線段上截取一條線段等于較短線段;補(bǔ)短法:延長(zhǎng)較短線段和較長(zhǎng)線段相等.這兩種方法統(tǒng)稱截長(zhǎng)補(bǔ)短法.當(dāng)已知或求證中涉及到線段a、b、c、d有下列情況之一時(shí)用此種方法:aba±b = ca±b = c±
6、d例:已知,如圖,在ABC中,ABAC,1 = 2,P為AD上任一點(diǎn),求證:ABACPBPC證明:截長(zhǎng)法:在AB上截取AN = AC,連結(jié)PN在APN和APC中,AN = AC1 = 2AP = APAPNAPCPC = PNBPN中有PBPCBNPBPCABAC補(bǔ)短法:延長(zhǎng)AC至M,使AM = AB,連結(jié)PM在ABP和AMP中AB = AM 1 = 2AP = APABPAMPPB = PM又在PCM中有CM PMPCABACPBPC練習(xí):1.已知,在ABC中,B = 60o,AD、CE是ABC的角平分線,并且它們交于點(diǎn)O求證:AC = AECD2.已知,如圖,ABCD1 = 2 ,3 =
7、4. 求證:BC = ABCD 7.條件不足時(shí)延長(zhǎng)已知邊構(gòu)造三角形.例:已知AC = BD,ADAC于A,BCBD于B求證:AD = BC證明:分別延長(zhǎng)DA、CB交于點(diǎn)EADAC BCBDCAE = DBE = 90o在DBE和CAE中DBE =CAEBD = ACE =EDBECAEED = EC,EB = EAEDEA = EC EBAD = BC8.連接四邊形的對(duì)角線,把四邊形問(wèn)題轉(zhuǎn)化成三角形來(lái)解決問(wèn)題.例:已知,如圖,ABCD,ADBC 求證:AB = CD 證明:連結(jié)AC(或BD)ABCD,ADBC1 = 2 在ABC和CDA中,1 = 2 AC = CA3 = 4 ABCCDAAB
8、 = CD練習(xí):已知,如圖,AB = DC,AD = BC,DE = BF,求證:BE = DF9.有和角平分線垂直的線段時(shí),通常把這條線段延長(zhǎng)??蓺w結(jié)為“垂直加平分出等腰三角形”.例:已知,如圖,在RtABC中,AB = AC,BAC = 90o,1 = 2 ,CEBD的延長(zhǎng)線于E求證:BD = 2CE證明:分別延長(zhǎng)BA、CE交于FBECFBEF =BEC = 90o在BEF和BEC中1 = 2 BE = BEBEF =BECBEFBECCE = FE =CFBAC = 90o , BECFBAC = CAF = 90o 1BDA = 90o1BFC = 90oBDA = BFC在ABD和A
9、CF中BAC = CAFBDA = BFCAB = ACABDACFBD = CFBD = 2CE練習(xí):已知,如圖,ACB = 3B,1 =2,CDAD于D,求證:ABAC = 2CD10.當(dāng)證題有困難時(shí),可結(jié)合已知條件,把圖形中的某兩點(diǎn)連接起來(lái)構(gòu)造全等三角形.例:已知,如圖,AC、BD相交于O,且AB = DC,AC = BD,求證:A = D證明:(連結(jié)BC,過(guò)程略)11.當(dāng)證題缺少線段相等的條件時(shí),可取某條線段中點(diǎn),為證題提供條件.例:已知,如圖,AB = DC,A = D 求證:ABC = DCB 證明:分別取AD、BC中點(diǎn)N、M,連結(jié)NB、NM、NC(過(guò)程略)12.有角平分線時(shí),常過(guò)
10、角平分線上的點(diǎn)向角兩邊做垂線,利用角平分線上的點(diǎn)到角兩邊距離相等證題.例:已知,如圖,1 = 2 ,P為BN上一點(diǎn),且PDBC于D,ABBC = 2BD,求證:BAPBCP = 180o證明:過(guò)P作PEBA于EPDBC,1 = 2 PE = PD在RtBPE和RtBPD中BP = BPPE = PDRtBPERtBPDBE = BDABBC = 2BD,BC = CDBD,AB = BEAEAE = CDPEBE,PDBCPEB =PDC = 90o在PEA和PDC中PE = PDPEB =PDCAE =CDPEAPDCPCB = EAPBAPEAP = 180oBAPBCP = 180o練習(xí)
11、:1.已知,如圖,PA、PC分別是ABC外角MAC與NCA的平分線,它們交于P,PDBM于M,PFBN于F,求證:BP為MBN的平分線2. 已知,如圖,在ABC中,ABC =100o,ACB = 20o,CE是ACB的平分線,D是AC上一點(diǎn),若CBD = 20o,求CED的度數(shù)。13.有等腰三角形時(shí)常用的輔助線作頂角的平分線,底邊中線,底邊高線例:已知,如圖,AB = AC,BDAC于D,求證:BAC = 2DBC證明:(方法一)作BAC的平分線AE,交BC于E,則1 = 2 = BAC又AB = ACAEBC2ACB = 90oBDACDBCACB = 90o2 = DBCBAC = 2DB
12、C(方法二)過(guò)A作AEBC于E(過(guò)程略)(方法三)取BC中點(diǎn)E,連結(jié)AE(過(guò)程略)有底邊中點(diǎn)時(shí),常作底邊中線例:已知,如圖,ABC中,AB = AC,D為BC中點(diǎn),DEAB于E,DFAC于F,求證:DE = DF證明:連結(jié)AD.D為BC中點(diǎn),BD = CD又AB =ACAD平分BACDEAB,DFACDE = DF將腰延長(zhǎng)一倍,構(gòu)造直角三角形解題例:已知,如圖,ABC中,AB = AC,在BA延長(zhǎng)線和AC上各取一點(diǎn)E、F,使AE = AF,求證:EFBC證明:延長(zhǎng)BE到N,使AN = AB,連結(jié)CN,則AB = AN = ACB = ACB, ACN = ANCBACBACNANC = 180
13、o2BCA2ACN = 180oBCAACN = 90o即BCN = 90oNCBCAE = AFAEF = AFE又BAC = AEF AFEBAC = ACN ANCBAC =2AEF = 2ANCAEF = ANCEFNCEFBC常過(guò)一腰上的某一已知點(diǎn)做另一腰的平行線例:已知,如圖,在ABC中,AB = AC,D在AB上,E在AC延長(zhǎng)線上,且BD = CE,連結(jié)DE交BC于F求證:DF = EF證明:(證法一)過(guò)D作DNAE,交BC于N,則DNB = ACB,NDE = E,AB = AC,B = ACBB =DNBBD = DN又BD = CE DN = EC在DNF和ECF中1 =
14、2NDF =EDN = EC DNFECFDF = EF(證法二)過(guò)E作EMAB交BC延長(zhǎng)線于M,則EMB =B(過(guò)程略)常過(guò)一腰上的某一已知點(diǎn)做底的平行線例:已知,如圖,ABC中,AB =AC,E在AC上,D在BA延長(zhǎng)線上,且AD = AE,連結(jié)DE求證:DEBC證明:(證法一)過(guò)點(diǎn)E作EFBC交AB于F,則AFE =BAEF =CAB = ACB =CAFE =AEFAD = AEAED =ADE又AFEAEFAEDADE = 180o2AEF2AED = 90o 即FED = 90o DEFE又EFBCDEBC(證法二)過(guò)點(diǎn)D作DNBC交CA的延長(zhǎng)線于N,(過(guò)程略)(證法三)過(guò)點(diǎn)A作AM
15、BC交DE于M,(過(guò)程略)常將等腰三角形轉(zhuǎn)化成特殊的等腰三角形-等邊三角形例:已知,如圖,ABC中,AB = AC,BAC = 80o ,P為形內(nèi)一點(diǎn),若PBC = 10o PCB = 30o 求PAB的度數(shù).解法一:以AB為一邊作等邊三角形,連結(jié)CE則BAE =ABE = 60oAE = AB = BEAB = ACAE = AC ABC =ACBAEC =ACEEAC =BACBAE = 80o 60o = 20oACE = (180oEAC)= 80oACB= (180oBAC)= 50oBCE =ACEACB = 80o50o = 30oPCB = 30oPCB = BCEABC =A
16、CB = 50o, ABE = 60oEBC =ABEABC = 60o50o =10oPBC = 10oPBC = EBC在PBC和EBC中PBC = EBCBC = BCPCB = BCEPBCEBCBP = BEAB = BEAB = BPBAP =BPAABP =ABCPBC = 50o10o = 40oPAB = (180oABP)= 70o解法二:以AC為一邊作等邊三角形,證法同一。解法三:以BC為一邊作等邊三角形BCE,連結(jié)AE,則EB = EC = BC,BEC =EBC = 60oEB = ECE在BC的中垂線上同理A在BC的中垂線上EA所在的直線是BC的中垂線EABCAEB
17、 = BEC = 30o =PCB由解法一知:ABC = 50oABE = EBCABC = 10o =PBCABE =PBC,BE = BC,AEB =PCBABEPBCAB = BPBAP =BPAABP =ABCPBC = 50o10o = 40oPAB = (180oABP) = (180o40o)= 70o14.有二倍角時(shí)常用的輔助線構(gòu)造等腰三角形使二倍角是等腰三角形的頂角的外角例:已知,如圖,在ABC中,1 = 2,ABC = 2C,求證:ABBD = AC證明:延長(zhǎng)AB到E,使BE = BD,連結(jié)DE則BED = BDEABD =EBDEABC =2EABC = 2CE = C
18、在AED和ACD中E = C1 = 2AD = ADAEDACDAC = AEAE = ABBEAC = ABBE即ABBD = AC平分二倍角例:已知,如圖,在ABC中,BDAC于D,BAC = 2DBC求證:ABC = ACB證明:作BAC的平分線AE交BC于E,則BAE = CAE = DBCBDACCBD C = 90oCAEC= 90o AEC= 180oCAEC= 90oAEBCABCBAE = 90oCAEC= 90oBAE = CAEABC = ACB加倍小角例:已知,如圖,在ABC中,BDAC于D,BAC = 2DBC求證:ABC = ACB證明:作FBD =DBC,BF交A
19、C于F(過(guò)程略)15.有垂直平分線時(shí)常把垂直平分線上的點(diǎn)與線段兩端點(diǎn)連結(jié)起來(lái).例:已知,如圖,ABC中,AB = AC,BAC = 120o,EF為AB的垂直平分線,EF交BC于F,交AB于E求證:BF =FC證明:連結(jié)AF,則AF = BFB =FABAB = ACB =CBAC = 120oB =CBAC =(180oBAC) = 30oFAB = 30oFAC =BACFAB = 120o30o =90o又C = 30oAF = FCBF =FC練習(xí):已知,如圖,在ABC中,CAB的平分線AD與BC的垂直平分線DE交于點(diǎn)D,DMAB于M,DNAC延長(zhǎng)線于N求證:BM = CN16. 有垂
20、直時(shí)常構(gòu)造垂直平分線.例:已知,如圖,在ABC中,B =2C,ADBC于D求證:CD = ABBD證明:(一)在CD上截取DE = DB,連結(jié)AE,則AB = AEB =AEBB = 2CAEB = 2C又AEB = CEACC =EACAE = CE又CD = DECECD = BDAB(二)延長(zhǎng)CB到F,使DF = DC,連結(jié)AF則AF =AC(過(guò)程略)17.有中點(diǎn)時(shí)常構(gòu)造垂直平分線.例:已知,如圖,在ABC中,BC = 2AB, ABC = 2C,BD = CD求證:ABC為直角三角形證明:過(guò)D作DEBC,交AC于E,連結(jié)BE,則BE = CE,C =EBCABC = 2CABE =EB
21、CBC = 2AB,BD = CDBD = AB在ABE和DBE中AB = BDABE =EBCBE = BEABEDBEBAE = BDEBDE = 90oBAE = 90o即ABC為直角三角形18.當(dāng)涉及到線段平方的關(guān)系式時(shí)常構(gòu)造直角三角形,利用勾股定理證題.例:已知,如圖,在ABC中,A = 90o,DE為BC的垂直平分線求證:BE2AE2 = AC2證明:連結(jié)CE,則BE = CEA = 90o AE2AC2 = EC2AE2AC2= BE2BE2AE2 = AC2練習(xí):已知,如圖,在ABC中,BAC = 90o,AB = AC,P為BC上一點(diǎn)求證:PB2PC2= 2PA219.條件中
22、出現(xiàn)特殊角時(shí)常作高把特殊角放在直角三角形中.例:已知,如圖,在ABC中,B = 45o,C = 30o,AB =,求AC的長(zhǎng). 解:過(guò)A作ADBC于DBBAD = 90o,B = 45o,B = BAD = 45o,AD = BDAB2 = AD2BD2,AB =AD = 1C = 30o,ADBCAC = 2AD = 2四邊形部分20.有平行線時(shí)常作平行線構(gòu)造平行四邊形例:已知,如圖,RtABC,ACB = 90o,CDAB于D,AE平分CAB交CD于F,過(guò)F作FHAB交BC于H求證:CE = BH證明:過(guò)F作FPBC交AB于P,則四邊形FPBH為平行四邊形B =FPA,BH = FPACB
23、 = 90o,CDAB5CAB = 45o,BCAB = 90o5 =B5 =FPA又1 =2,AF = AFCAFPAFCF = FP4 =15,3 =2B3 =4CF = CECE = BH練習(xí):已知,如圖,ABEFGH,BE = GC求證:AB = EFGH21.有以平行四邊形一邊中點(diǎn)為端點(diǎn)的線段時(shí)常延長(zhǎng)此線段. 例:已知,如圖,在ABCD中,AB = 2BC,M為AB中點(diǎn)求證:CMDM證明:延長(zhǎng)DM、CB交于N四邊形ABCD為平行四邊形AD = BC,ADBCA = NBA ADN =N又AM = BMAMDBMNAD = BNBN = BCAB = 2BC,AM = BMBM = B
24、C = BN1 =2,3 =N123N = 180o,13 = 90oCMDM22.有垂直時(shí)可作垂線構(gòu)造矩形或平行線.例:已知,如圖,E為矩形ABCD的邊AD上一點(diǎn),且BE = ED,P為對(duì)角線BD上一點(diǎn),PFBE于F,PGAD于G求證:PFPG = AB證明:證法一:過(guò)P作PHAB于H,則四邊形AHPG為矩形AH = GP PHADADB =HPBBE = DEEBD = ADBHPB =EBD又PFB =BHP = 90oPFBBHPHB = FPAHHB = PGPF即AB = PGPF證法二:延長(zhǎng)GP交BC于N,則四邊形ABNG為矩形,(證明略)23.直角三角形常用輔助線方法:作斜邊上
25、的高例:已知,如圖,若從矩形ABCD的頂點(diǎn)C作對(duì)角線BD的垂線與BAD的平分線交于點(diǎn)E求證:AC = CE證明:過(guò)A作AFBD,垂足為F,則AFEGFAE = AEG四邊形ABCD為矩形BAD = 90o OA = ODBDA =CADAFBDABDADB = ABDBAF = 90oBAF =ADB =CADAE為BAD的平分線BAE =DAEBAEBAF =DAEDAC即FAE =CAECAE =AEGAC = EC作斜邊中線,當(dāng)有下列情況時(shí)常作斜邊中線:有斜邊中點(diǎn)時(shí)例:已知,如圖,AD、BE是ABC的高, F是DE的中點(diǎn),G是AB的中點(diǎn)求證:GFDE證明:連結(jié)GE、GDAD、BE是ABC
26、的高,G是AB的中點(diǎn)GE = AB,GD = ABGE = GDF是DE的中點(diǎn)GFDE有和斜邊倍分關(guān)系的線段時(shí)例:已知,如圖,在ABC中,D是BC延長(zhǎng)線上一點(diǎn),且DABA于A,AC = BD求證:ACB = 2B證明:取BD中點(diǎn)E,連結(jié)AE,則AE = BE = BD1 =BAC = BDAC = AEACB =2 2 =1B2 = 2BACB = 2B24.有正方形一邊中點(diǎn)時(shí)常取另一邊中點(diǎn).例:已知,如圖,正方形ABCD中,M為AB的中點(diǎn),MNMD,BN平分CBE并交MN于N求證:MD = MN證明:取AD的中點(diǎn)P,連結(jié)PM,則DP = PA =AD四邊形ABCD為正方形AD = AB, A
27、 =ABC = 90o1AMD = 90o,又DMMN2AMD = 90o1 =2M為AB中點(diǎn)AM = MB = ABDP = MB AP = AMAPM =AMP = 45oDPM =135oBN平分CBECBN = 45oMBN =MBCCBN = 90o45o= 135o即DPM =MBNDPMMBNDM = MN注意:把M改為AB上任一點(diǎn),其它條件不變,結(jié)論仍然成立。練習(xí):已知,Q為正方形ABCD的CD邊的中點(diǎn),P為CQ上一點(diǎn),且AP = PCBC求證:BAP = 2QAD25.利用正方形進(jìn)行旋轉(zhuǎn)變換 旋轉(zhuǎn)變換就是當(dāng)圖形具有鄰邊相等這一特征時(shí),可以把圖形的某部分繞相等鄰邊的公共端點(diǎn)旋轉(zhuǎn)
28、到另一位置的引輔助線方法. 旋轉(zhuǎn)變換主要用途是把分散元素通過(guò)旋轉(zhuǎn)集中起來(lái),從而為證題創(chuàng)造必要的條件. 旋轉(zhuǎn)變換經(jīng)常用于等腰三角形、等邊三角形及正方形中.例:已知,如圖,在ABC中,AB = AC,BAC = 90o,D為BC邊上任一點(diǎn)求證:2AD2 = BD2CD2證明:把ABD繞點(diǎn)A逆時(shí)針旋轉(zhuǎn)90o得ACEBD = CE B = ACEBAC = 90oDAE = 90oDE2 = AD2AE2 = 2AD2BACB = 90oDCE = 90oCD2CE2 = DE22AD2 = BD2CD2 注意:把ADC繞點(diǎn)A順時(shí)針旋轉(zhuǎn)90o 也可,方法同上。練習(xí):已知,如圖,在正方形ABCD中,E為
29、AD上一點(diǎn),BF平分CBE交CD于F求證:BE = CFAE26.有以正方形一邊中點(diǎn)為端點(diǎn)的線段時(shí),常把這條線段延長(zhǎng),構(gòu)造全等三角形.例:如圖,在正方形ABCD中,E、F分別是CD、DA的中點(diǎn),BE與CF交于P點(diǎn)求證:AP = AB 證明:延長(zhǎng)CF交BA的延長(zhǎng)線于K四邊形ABCD為正方形BC = AB = CD = DA BCD =D =BAD = 90o E、F分別是CD、DA的中點(diǎn)CE = CD DF = AF = ADCE = DFBCECDFCBE =DCF BCFDCF = 90o BCFCBE = 90oBECF又D =DAK = 90o DF = AF 1 =2CDFKAFCD
30、= KABA = KA又BECFAP = AB練習(xí):如圖,在正方形ABCD中,Q在CD上,且DQ = QC,P在BC上,且AP = CDCP求證:AQ平分DAP27.從梯形的一個(gè)頂點(diǎn)作一腰的平行線,把梯形分成一個(gè)平行四邊形和一個(gè)三角形.例:已知,如圖,等腰梯形ABCD中,ADBC,AD = 3,AB = 4,BC = 7求B的度數(shù)解:過(guò)A作AECD交BC于E,則四邊形AECD為平行四邊形AD = EC, CD = AEAB = CD = 4, AD = 3, BC = 7 BE = AE = AB = 4ABE為等邊三角形B = 60o 28.從梯形同一底的兩端作另一底所在直線的垂線,把梯形轉(zhuǎn)
31、化成一個(gè)矩形和兩個(gè)三角形.例:已知,如圖,在梯形ABCD中,ADBC,AB = AC,BAC = 90o,BD = BC,BD交AC于O求證:CO = CD證明:過(guò)A、D分別作AEBC,DFBC,垂足分別為E、F則四邊形AEFD為矩形AE = DFAB = AC,AEBC,BAC = 90o,AE = BE = CE =BC,ACB = 45o BC = BDAE = DF = BD又DFBCDBC = 30oBD = BCBDC =BCD = (180oDBC)= 75oDOC =DBCACB = 30o45o = 75oBDC =DOCCO = CD29.從梯形的一個(gè)頂點(diǎn)作一條對(duì)角線的平行
32、線,把梯形轉(zhuǎn)化成平行四邊形和三角形.例:已知,如圖,等腰梯形ABCD中,ADBC,ACBD,ADBC = 10,DEBC于E求DE的長(zhǎng).解:過(guò)D作DFAC,交BC的延長(zhǎng)線于F,則四邊形ACFD為平行四邊形AC = DF, AD = CF四邊形ABCD為等腰梯形AC = DBBD = FDDEBC BE = EF =BF=(BCCF) =(BCAD)=×10 = 5ACDF,BDACBDDFBE = FEDE = BE = EF = BF = 5答:DE的長(zhǎng)為5.30.延長(zhǎng)梯形兩腰使它們交于一點(diǎn),把梯形轉(zhuǎn)化成三角形.例:已知,如圖,在四邊形ABCD中,有AB = DC,B =C,ADB
33、C求證:四邊形ABCD等腰梯形證明:延長(zhǎng)BA、CD,它們交于點(diǎn)EB =CEB = EC又AB = DCAE =DE EAD =EDAEEADEDA = 180o BCE = 180o EAD =BADBCADBC,B =C四邊形ABCD等腰梯形(此題還可以過(guò)一頂點(diǎn)作AB或CD的平行線;也可以過(guò)A、D作BC的垂線)31.有梯形一腰中點(diǎn)時(shí),常過(guò)此中點(diǎn)作另一腰的平行線,把梯形轉(zhuǎn)化成平行四邊形.例:已知,如圖,梯形ABCD中,ADBC,E為CD中點(diǎn),EFAB于F求證:S梯形ABCD = EF·AB證明:過(guò)E作MNAB,交AD的延長(zhǎng)線于M,交BC于N,則四邊形ABNM為平行四邊形EFABSAB
34、NM = AB·EFADBCM =MNC 又DE = CE 1 =2CENDEMSCEN = SDEMS梯形ABCD = S五邊形ABNEDSCEN = S五邊形ABNEDSDEM = S梯形ABCD = EF·AB32. 有梯形一腰中點(diǎn)時(shí),也常把一底的端點(diǎn)與中點(diǎn)連結(jié)并延長(zhǎng)與另一底的延長(zhǎng)線相交,把梯形轉(zhuǎn)換成三角形.例:已知,如圖,直角梯形ABCD中,ADBC,ABAD于A,DE = EC = BC求證:AEC = 3DAE證明:連結(jié)BE并延長(zhǎng)交AD的延長(zhǎng)線于NADBC3 =N又1 =2 ED = ECDENCEBBE = EN DN = BCABADAE = EN = BE
35、N =DAEAEB =NDAE = 2DAEDE = BC BC = DNDE = DNN =11 =2 N =DAE2 =DAEAEB2 = 2DAEDAE即AEC = 3DAE33.梯形有底的中點(diǎn)時(shí),常過(guò)中點(diǎn)做兩腰的平行線.例:已知,如圖,梯形ABCD中,ADBC,ADBC,E、F分別是AD、BC的中點(diǎn),且EFBC求證:B =C證明:過(guò)E作EMAB, ENCD,交BC于M、N,則得ABME,NCDEAE = BM,AB= EM,DE = CN,CD = NEAE = DEBM = CN又BF = CFFM = FN又EFBCEM = EN1 =2ABEM, CDEN1 =B 2 =CB =
36、 C34.有線段中點(diǎn)時(shí),常過(guò)中點(diǎn)作平行線,利用平行線等分線段定理的推論證題.例:已知:ABC中,D為AB中點(diǎn),E為BC的三等分點(diǎn),(BECE)AE、CD交于點(diǎn)F 求證:F為CD的中點(diǎn)證明:過(guò)D作DNAE交BC于ND為AB中點(diǎn)BN = EN又E為BC的三等分點(diǎn)BN = EN = CEDNAEF為CD的中點(diǎn)35.有下列情況時(shí)常作三角形中位線.有一邊中點(diǎn);有線段倍分關(guān)系;有兩邊(或兩邊以上)中點(diǎn).例:如圖,AE為正方形ABCD中BAC的平分線,AE分別交BD、BC于F、E,AC、BD相交于O求證:OF =CE證明:取AE的中點(diǎn)N,連結(jié)ON,則ON為ACE的中位線ONCE,ON =CE6 =ONE四邊
37、形ABCD為正方形3 =4 = 45o5 =31, 6 =421 =2 5 =66 =ONEONE =5ON = OFOF =CE36.有下列情況時(shí)常構(gòu)造梯形中位線有一腰中點(diǎn)有兩腰中點(diǎn)涉及梯形上、下底和例1:已知,如圖,梯形ABCD中,ADBC,DAB = 90o ,E為CD的中點(diǎn),連結(jié)AE、BE求證:AE = BE 證明:取AB的中點(diǎn)F,連結(jié)EF,則EFADDAB =EFB =90oEFABEF為AB的中垂線AE = BE例2:從ABCD的頂點(diǎn)ABCD向形外的任意直線MN引垂線AA、BB、CC、DD,垂足分別為A、B、C、D求證:AACC = BBDD證明:連結(jié)AC、BD,它們交于點(diǎn)O,過(guò)O
38、作OEMN于E,則AAOECC四邊形ABCD為平行四邊形AO = COAE = CE AACC = 2OE同理可證:BBDD = 2OEAACC = BBDD相似形和解直角三角形部分37.當(dāng)圖形中有叉線(基本圖形如下)時(shí),常作平行線.例:已知,如圖,AD為ABC的中線,F(xiàn)為AB上任一點(diǎn),CF交AD于E求證:證明:過(guò)F作FNBC交AD于N 又CD = BD38.有中線時(shí)延長(zhǎng)中線(有時(shí)也可在中線上截取線段)構(gòu)造平行四邊形.例:AD為ABC的中線,E為AD上一點(diǎn),BE、CE的延長(zhǎng)線分別交AC、AB于點(diǎn)M、N求證:MNBC 證明:延長(zhǎng)AD至F,使DF = DE,連結(jié)BF、CF,則四邊形BFCE為平行四
39、邊形BFCN CFBM MNBC39.當(dāng)已知或求證中,涉及到以下情況時(shí),常構(gòu)造直角三角形.有特殊角時(shí),如有30o、45o、60o、120o、135o角時(shí).涉及有關(guān)銳角三角函數(shù)值時(shí).構(gòu)造直角三角形經(jīng)常通過(guò)作垂線來(lái)實(shí)現(xiàn).例:一輪船自西向東航行,在A處測(cè)得某島C在北偏東60o的方向上,船前進(jìn)8海里后到達(dá)B,再測(cè)C島在北偏東30的方向上,問(wèn)船再前進(jìn)多少海里與C島最近?最近距離是多少?解:由題可作圖,且CAB = 60o ,ABC = 120o ,AB = BC = 8(海里)在RtABC中,BC = 8,CBD = 60o ,BD = BC·cos60o = 8×= 4(海里)CD
40、 = BC·sin60o = 8×= 4(海里)答:船再前進(jìn)4海里就與C最近,最近距離是4海里.倍.圓 部 分40.圓中解決有關(guān)弦的問(wèn)題時(shí),常常需要作出圓心到弦的垂線段(即弦心距)這一輔助線,一是利用垂徑定理得到平分弦的條件,二是構(gòu)造直角三角形,利用勾股定理解題.例:如圖,在以O(shè)為圓心的兩個(gè)同心圓中,大圓的弦AB交小圓于C、D二點(diǎn).求證:AC = BD證明:過(guò)O作OEAB于EO為圓心,OEABAE = BE CE = DEAC = BD練習(xí):如圖,AB為O的弦,P是AB上的一點(diǎn),AB = 10cm,PA = 4cm.求O的半徑.41.有等弧或證弧等時(shí)常連等弧所對(duì)的弦或作等弧
41、所對(duì)的圓心角.例:如圖,已知AB是O的直徑,M、N分別是AO、BO的中點(diǎn),CMAB,DNAB,求證: 證明:(一)連結(jié)OC、ODM、N分別是AO、BO的中點(diǎn)OM = AO、ON = BOOA = OBOM = ONCMOA、DNOB、OC = ODRtCOMRtDONCOA = DOB(二)連結(jié)AC、OC、OD、BDM、N分別是AO、BO的中點(diǎn)AC = OC BD = ODOC = ODAC = BD42.有弦中點(diǎn)時(shí)常連弦心距例:如圖,已知M、N分別是O 的弦AB、CD的中點(diǎn),AB = CD,求證:AMN = CNM證明:連結(jié)OM、ONO為圓心,M、N分別是弦AB、CD的中點(diǎn)OMAB ONCDAB = CDOM = ONOMN = ONMAMN = 90oOMN CNM = 90oONMAMN =CNM43.證明弦相等或已知弦相等時(shí)常作弦心距.例:如圖,已知O1與O2為等圓,P為O1、O2的中點(diǎn),過(guò)P的直線分別交O1、O2于A、C、D、B.求證:AC = BD證明:過(guò)O1作O1MAB于M,過(guò)O2作O2NAB于N,則O1MO2NO1P = O2PO1M = O2NAC = BD44.有弧中點(diǎn)(或證明是弧中點(diǎn))時(shí),常有以下幾種引輔助線的方法:連結(jié)過(guò)弧中點(diǎn)的半徑連結(jié)等弧所對(duì)的弦連
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 2026年上半年黑龍江事業(yè)單位聯(lián)考省委辦公廳招聘6人備考考試試題附答案解析
- 2026江西南昌市勞動(dòng)保障事務(wù)代理中心外包項(xiàng)目招聘2人備考考試題庫(kù)附答案解析
- 第14章 回歸:走向自主創(chuàng)新的中國(guó)公共行政學(xué)
- 2026年吉安吉星養(yǎng)老服務(wù)有限公司招聘護(hù)理員參考考試題庫(kù)附答案解析
- 2026上海應(yīng)物所財(cái)務(wù)與資產(chǎn)處副處長(zhǎng)競(jìng)聘1人備考考試試題附答案解析
- 2026中國(guó)科學(xué)院理化技術(shù)研究所熱聲熱機(jī)團(tuán)隊(duì)招聘特別研究助理博士后1人備考考試試題附答案解析
- 武漢市漢陽(yáng)區(qū)晴川英才初級(jí)中學(xué)招聘教師2人參考考試題庫(kù)附答案解析
- (二統(tǒng))紅河州、文山州2026屆高三高中畢業(yè)生第二次復(fù)習(xí)統(tǒng)一檢測(cè)地理試卷(含答案解析)
- 2026浙江溫州市平陽(yáng)縣消防救援大隊(duì)廚師招聘1人參考考試試題附答案解析
- 2026山東德州市事業(yè)單位招聘初級(jí)綜合類崗位人員備考考試題庫(kù)附答案解析
- 2026貴州省黔晟國(guó)有資產(chǎn)經(jīng)營(yíng)有限責(zé)任公司面向社會(huì)招聘中層管理人員2人備考考試試題及答案解析
- 2026中國(guó)電信四川公用信息產(chǎn)業(yè)有限責(zé)任公司社會(huì)成熟人才招聘?jìng)淇碱}庫(kù)及答案詳解一套
- 南京航空航天大學(xué)飛行器制造工程考試試題及答案
- 陶瓷工藝品彩繪師改進(jìn)水平考核試卷含答案
- 2025廣東百萬(wàn)英才匯南粵惠州市市直事業(yè)單位招聘急需緊缺人才31人(公共基礎(chǔ)知識(shí))測(cè)試題附答案
- 粉塵防護(hù)知識(shí)課件
- 注塑模具調(diào)試員聘用協(xié)議
- (2025年)糧食和物資儲(chǔ)備局招聘考試題庫(kù)(答案+解析)
- 2026年樂(lè)陵市市屬國(guó)有企業(yè)公開(kāi)招聘工作人員6名備考題庫(kù)及答案詳解一套
- DB32/T+5309-2025+普通國(guó)省道智慧公路建設(shè)總體技術(shù)規(guī)范
- 2026年工程監(jiān)理招聘面試常見(jiàn)問(wèn)題集
評(píng)論
0/150
提交評(píng)論