版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
1、第四節(jié)第四節(jié) 曲面曲面 柱面與旋轉(zhuǎn)曲面柱面與旋轉(zhuǎn)曲面 二次曲面二次曲面水桶的表面、臺(tái)燈的罩子面等水桶的表面、臺(tái)燈的罩子面等曲面在空間解析幾何中被看成是點(diǎn)的幾何軌跡曲面在空間解析幾何中被看成是點(diǎn)的幾何軌跡曲面方程的定義:曲面方程的定義:如如果果曲曲面面S與與三三元元方方程程0),( zyxF有有下下述述關(guān)關(guān)系系:(1 1) 曲面曲面S上任一點(diǎn)的坐標(biāo)都滿足方程;上任一點(diǎn)的坐標(biāo)都滿足方程;(2 2)不在曲面)不在曲面S上的點(diǎn)的坐標(biāo)都不滿足方程;上的點(diǎn)的坐標(biāo)都不滿足方程;那那么么,方方程程0),( zyxF就就叫叫做做曲曲面面S的的方方程程,而而曲曲面面S就就叫叫做做方方程程的的圖圖形形曲面的實(shí)例:曲
2、面的實(shí)例:一、曲面方程的概念一、曲面方程的概念以下給出幾例常見的曲面以下給出幾例常見的曲面.例例 1 1 建建立立球球心心在在點(diǎn)點(diǎn)),(0000zyxM、半半徑徑為為R的的球球面面方方程程.解解設(shè)設(shè)),(zyxM是球面上任一點(diǎn),是球面上任一點(diǎn),RMM |0根據(jù)題意有根據(jù)題意有 Rzzyyxx 202020 2202020Rzzyyxx 所求方程為所求方程為特殊地:球心在原點(diǎn)時(shí)方程為特殊地:球心在原點(diǎn)時(shí)方程為2222Rzyx 例例 2 2 求求與與原原點(diǎn)點(diǎn)O及及)4 , 3 , 2(0M的的距距離離之之比比為為2:1的的點(diǎn)點(diǎn)的的全全體體所所組組成成的的曲曲面面方方程程.解解設(shè)設(shè)),(zyxM是曲
3、面上任一點(diǎn),是曲面上任一點(diǎn),,21|0 MMMO根據(jù)題意有根據(jù)題意有 ,21432222222 zyxzyx .911634132222 zyx所求方程為所求方程為例例 3 3 已知已知)3 , 2 , 1(A,)4 , 1, 2( B,求線段,求線段AB的的垂直平分面的方程垂直平分面的方程.設(shè)設(shè)),(zyxM是是所所求求平平面面上上任任一一點(diǎn)點(diǎn),根據(jù)題意有根據(jù)題意有|,|MBMA 222321 zyx ,412222 zyx化簡(jiǎn)得所求方程化簡(jiǎn)得所求方程. 07262 zyx解解二、旋轉(zhuǎn)曲面二、旋轉(zhuǎn)曲面定義定義 以一條平面以一條平面曲線繞其平面上的曲線繞其平面上的一條直線旋轉(zhuǎn)一周一條直線旋轉(zhuǎn)一
4、周所成的曲面稱為旋所成的曲面稱為旋轉(zhuǎn)曲面轉(zhuǎn)曲面. .這條定直線叫旋轉(zhuǎn)這條定直線叫旋轉(zhuǎn)曲面的曲面的軸軸播放播放xozy0),( zyf), 0(111zyM M),(zyxM設(shè)設(shè)1)1(zz (2)點(diǎn))點(diǎn)M到到z軸的距離軸的距離|122yyxd 旋轉(zhuǎn)過程中的特征:旋轉(zhuǎn)過程中的特征:如圖如圖將將 代入代入2211,yxyzz 0),(11 zyfd將將 代入代入2211,yxyzz 0),(11 zyf , 0,22 zyxf坐標(biāo)面上的已知曲線坐標(biāo)面上的已知曲線繞繞軸軸yoz0),( zyfz旋轉(zhuǎn)一周的旋轉(zhuǎn)一周的旋轉(zhuǎn)曲面方程旋轉(zhuǎn)曲面方程.得方程得方程同同理理:yoz坐坐標(biāo)標(biāo)面面上上的的已已知知曲曲
5、線線0),( zyf繞繞y軸軸旋旋轉(zhuǎn)轉(zhuǎn)一一周周的的旋旋轉(zhuǎn)轉(zhuǎn)曲曲面面方方程程為為 . 0,22 zxyf例例 5 5 直線直線L繞另一條與繞另一條與L相交的直線旋轉(zhuǎn)一周,相交的直線旋轉(zhuǎn)一周,所得旋轉(zhuǎn)曲面叫所得旋轉(zhuǎn)曲面叫圓錐面圓錐面兩直線的交點(diǎn)叫圓錐面的兩直線的交點(diǎn)叫圓錐面的頂點(diǎn)頂點(diǎn),兩直線的夾角,兩直線的夾角 20叫圓錐面的叫圓錐面的半頂半頂角角試建立頂點(diǎn)在坐標(biāo)原點(diǎn),旋轉(zhuǎn)軸為試建立頂點(diǎn)在坐標(biāo)原點(diǎn),旋轉(zhuǎn)軸為z軸,半頂軸,半頂角為角為 的圓錐面方程的圓錐面方程xozy解解 yoz面面上上直直線線方方程程為為 cotyz ), 0(111zyM ),(zyxM圓錐面方程圓錐面方程 cot22yxz o
6、xzy 例例6 6 將下列各曲線繞對(duì)應(yīng)的軸旋轉(zhuǎn)一周,求將下列各曲線繞對(duì)應(yīng)的軸旋轉(zhuǎn)一周,求生成的旋轉(zhuǎn)曲面的方程生成的旋轉(zhuǎn)曲面的方程(1)雙曲線)雙曲線分別繞分別繞軸和軸和 軸;軸;12222 czaxxz繞繞x軸軸旋旋轉(zhuǎn)轉(zhuǎn)繞繞z軸軸旋旋轉(zhuǎn)轉(zhuǎn)122222 czyax122222 czayx旋轉(zhuǎn)雙曲面旋轉(zhuǎn)雙曲面(2)橢圓)橢圓繞繞 軸和軸和軸;軸; 012222xczayyz繞繞y軸軸旋旋轉(zhuǎn)轉(zhuǎn)繞繞z軸軸旋旋轉(zhuǎn)轉(zhuǎn)122222 czxay122222 czayx旋轉(zhuǎn)橢球面旋轉(zhuǎn)橢球面(3)拋物線)拋物線繞繞軸;軸; 022xpzyzpzyx222 旋轉(zhuǎn)拋物面旋轉(zhuǎn)拋物面播放播放定義定義三、柱面三、柱面觀察柱
7、面的形觀察柱面的形成過程成過程:平行于定直線并沿定曲線平行于定直線并沿定曲線 移動(dòng)的直線移動(dòng)的直線 所形成的曲面稱為柱面所形成的曲面稱為柱面. .CL這條定曲線這條定曲線 叫柱面的叫柱面的準(zhǔn)線準(zhǔn)線,動(dòng)直線,動(dòng)直線 叫叫柱面的柱面的母線母線.CL柱面舉例柱面舉例xozyxozyxy22 拋物柱面拋物柱面xy 平面平面從柱面方程看柱面的從柱面方程看柱面的特征特征: 只只含含yx,而而缺缺z的的方方程程0),( yxF,在在空空間間直直角角坐坐標(biāo)標(biāo)系系中中表表示示母母線線平平行行于于z軸軸的的柱柱面面,其其準(zhǔn)準(zhǔn)線線為為xoy面面上上曲曲線線C.(其他類推)(其他類推)實(shí)實(shí) 例例12222 czby橢
8、圓柱面橢圓柱面 / 軸軸x12222 byax雙曲柱面雙曲柱面 / 軸軸zpzx22 拋物柱面拋物柱面 / 軸軸y二次曲面的定義:二次曲面的定義:三元二次方程所表示的曲面稱之三元二次方程所表示的曲面稱之相應(yīng)地平面被稱為相應(yīng)地平面被稱為一次曲面一次曲面討論二次曲面性狀的討論二次曲面性狀的截痕法截痕法: 用坐標(biāo)面和平行于坐標(biāo)面的平面與曲面用坐標(biāo)面和平行于坐標(biāo)面的平面與曲面相截,考察其交線(即截痕)的形狀,然后相截,考察其交線(即截痕)的形狀,然后加以綜合,從而了解曲面的全貌加以綜合,從而了解曲面的全貌以下用截痕法討論幾種特殊的二次曲面以下用截痕法討論幾種特殊的二次曲面四、二次曲面四、二次曲面ozy
9、x(一)橢球面(一)橢球面1222222 czbyax 橢球面與橢球面與三個(gè)坐標(biāo)面三個(gè)坐標(biāo)面的交線:的交線:,012222 yczax.012222 xczby,012222 zbyax橢圓截面的大小隨平面位置的變化而變化橢圓截面的大小隨平面位置的變化而變化.橢球面與平面橢球面與平面 的交線為橢圓的交線為橢圓1zz 同理與平面同理與平面 和和 的交線也是橢圓的交線也是橢圓.1xx 1yy 12122222122221)()(zzzccbyzccaxcz |1橢球面的幾種特殊情況:橢球面的幾種特殊情況:,)1(ba 1222222 czayax旋轉(zhuǎn)橢球面旋轉(zhuǎn)橢球面12222 czax由橢圓由橢圓
10、 繞繞 軸旋轉(zhuǎn)而成軸旋轉(zhuǎn)而成z旋轉(zhuǎn)橢球面與橢球面的旋轉(zhuǎn)橢球面與橢球面的區(qū)別區(qū)別:122222 czayx方程可寫為方程可寫為與平面與平面 的交線為圓的交線為圓.1zz )| (1cz ,)2(cba 1222222 azayax球面球面.2222azyx .)(12122222 zzzccayx截面上圓的方程截面上圓的方程方程可寫為方程可寫為(二)拋物面(二)拋物面zqypx 2222( 與與 同號(hào))同號(hào))pq橢圓拋物面橢圓拋物面用截痕法討論:用截痕法討論:(1)用坐標(biāo)面)用坐標(biāo)面 與曲面相截與曲面相截)0( zxoy截得一點(diǎn),即坐標(biāo)原點(diǎn)截得一點(diǎn),即坐標(biāo)原點(diǎn))0 , 0 , 0(O設(shè)設(shè)0, 0
11、 qp原點(diǎn)也叫橢圓拋物面的原點(diǎn)也叫橢圓拋物面的頂點(diǎn)頂點(diǎn).與平面與平面 的交線為橢圓的交線為橢圓.1zz 11212122zzqzypzx當(dāng)當(dāng) 變動(dòng)時(shí),這種橢變動(dòng)時(shí),這種橢圓的圓的中心中心都在都在 軸上軸上.1zz)0(1 z與平面與平面 不相交不相交.1zz )0(1 z(2)用坐標(biāo)面)用坐標(biāo)面 與曲面相截與曲面相截)0( yxoz 022ypzx截得拋物線截得拋物線與平面與平面 的交線為拋物線的交線為拋物線.1yy 121222yyqyzpx它的軸平行于它的軸平行于 軸軸z頂點(diǎn)頂點(diǎn) qyy2, 0211(3)用坐標(biāo)面)用坐標(biāo)面 , 與曲面相截與曲面相截)0( xyoz1xx 均可得拋物線均可
12、得拋物線.同理當(dāng)同理當(dāng) 時(shí)可類似討論時(shí)可類似討論.0, 0 qpzxyoxyzo橢圓拋物面的圖形如下:橢圓拋物面的圖形如下:0, 0 qp0, 0 qp特殊地:當(dāng)特殊地:當(dāng) 時(shí),方程變?yōu)闀r(shí),方程變?yōu)閝p zpypx 2222旋轉(zhuǎn)拋物面旋轉(zhuǎn)拋物面)0( p(由(由 面上的拋物線面上的拋物線 繞它的軸繞它的軸旋轉(zhuǎn)而成的)旋轉(zhuǎn)而成的)xozpzx22 11222zzpzyx與平面與平面 的交線為圓的交線為圓.1zz )0(1 z當(dāng)當(dāng) 變動(dòng)時(shí),這種圓變動(dòng)時(shí),這種圓的的中心中心都在都在 軸上軸上.1zz(三)雙曲面(三)雙曲面單葉雙曲面單葉雙曲面1222222 czbyax(1)用坐標(biāo)面)用坐標(biāo)面 與曲
13、面相截與曲面相截)0( zxoy截得中心在原點(diǎn)截得中心在原點(diǎn) 的橢圓的橢圓.)0 , 0 , 0(O 012222zbyax與平面與平面 的交線為橢圓的交線為橢圓.1zz 當(dāng)當(dāng) 變動(dòng)時(shí),這種橢變動(dòng)時(shí),這種橢圓的圓的中心中心都在都在 軸上軸上.1zz 122122221zzczbyax(2)用坐標(biāo)面)用坐標(biāo)面 與曲面相截與曲面相截)0( yxoz截得中心在原點(diǎn)的雙曲線截得中心在原點(diǎn)的雙曲線. 012222yczax實(shí)軸與實(shí)軸與 軸相合,軸相合,虛軸與虛軸與 軸相合軸相合.xz 122122221yybyczax雙曲線的雙曲線的中心中心都在都在 軸上軸上.y與平面與平面 的交線為雙曲線的交線為雙曲
14、線.1yy )(1by ,)1(221by x實(shí)軸與實(shí)軸與 軸平行軸平行,z虛軸與虛軸與 軸平行軸平行.,)2(221by z實(shí)軸與實(shí)軸與 軸平行軸平行,x虛軸與虛軸與 軸平行軸平行.,)3(1by 截痕為一對(duì)相交于點(diǎn)截痕為一對(duì)相交于點(diǎn) 的直線的直線.)0 , 0(b,0 byczax.0 byczax,)4(1by 截痕為一對(duì)相交于點(diǎn)截痕為一對(duì)相交于點(diǎn) 的直線的直線.)0 , 0(b ,0 byczax.0 byczax(3)用坐標(biāo)面)用坐標(biāo)面 , 與曲面相截與曲面相截)0( xyoz1xx 均可得雙曲線均可得雙曲線.單葉雙曲面圖形單葉雙曲面圖形 xyoz平面平面 的截痕是的截痕是兩對(duì)相交直
15、線兩對(duì)相交直線.ax 曲面方程的概念曲面方程的概念旋轉(zhuǎn)曲面的概念及求法旋轉(zhuǎn)曲面的概念及求法.柱面的概念柱面的概念(母線、準(zhǔn)線母線、準(zhǔn)線). 0),( zyxF四、小結(jié)四、小結(jié)思考題思考題 指出下列方程在平面解析幾何中和空指出下列方程在平面解析幾何中和空間解析幾何中分別表示什么圖形?間解析幾何中分別表示什么圖形?; 2)1( x; 4)2(22 yx. 1)3( xy思考題解答思考題解答平面解析幾何中平面解析幾何中空間解析幾何中空間解析幾何中2 x422 yx1 xy平平行行于于y軸軸的的直直線線平平行行于于yoz面面的的平平面面圓圓心心在在)0 , 0(,半半徑徑為為2的的圓圓以以z軸為中心軸
16、的圓柱面軸為中心軸的圓柱面斜率為斜率為1的直線的直線平平行行于于z軸軸的的平平面面方程方程一、一、 填空題:填空題:1 1、 與與Z軸和點(diǎn)軸和點(diǎn))1,3,1( A等距離的點(diǎn)的軌跡方程是等距離的點(diǎn)的軌跡方程是_;2 2、 以點(diǎn)以點(diǎn))1,2,2( O為球心,且通過坐標(biāo)原點(diǎn)的球面為球心,且通過坐標(biāo)原點(diǎn)的球面方程是方程是_;3 3、 球面:球面:07442222 zyxzyx的球心是的球心是點(diǎn)點(diǎn)_,半徑,半徑 R _ _;4 4、 設(shè)曲面方程設(shè)曲面方程22ax+ +22by+ +22cz=1=1,當(dāng),當(dāng)ba 時(shí),曲面可由時(shí),曲面可由xoz面上以曲線面上以曲線_繞繞_軸旋軸旋轉(zhuǎn)面成,或由轉(zhuǎn)面成,或由yo
17、z面上以曲線面上以曲線_ 繞繞_軸旋轉(zhuǎn)面成軸旋轉(zhuǎn)面成 ; ;練練 習(xí)習(xí) 題題5 5、 若柱面的母線平行于某條坐標(biāo)軸,則柱面方程的特若柱面的母線平行于某條坐標(biāo)軸,則柱面方程的特點(diǎn)是點(diǎn)是_;6 6、 曲面曲面1422 zyx是由是由_繞繞_軸放軸放置一周所形成的;置一周所形成的;7 7、 曲面曲面222)(yxaz 是由是由_繞繞_軸旋轉(zhuǎn)一周所形成的;軸旋轉(zhuǎn)一周所形成的;8 8、 方程方程2 x在平面解析幾何中表示在平面解析幾何中表示_在空在空間解析幾何中表示間解析幾何中表示_;9 9、 方 程方 程422 yx在 平 面 解 析 幾 何 中 表 示在 平 面 解 析 幾 何 中 表 示_ , 在
18、 空 間 解 析 幾 何 中 表 示, 在 空 間 解 析 幾 何 中 表 示_._.二二、 畫畫出出下下列列各各方方程程所所表表示示的的曲曲面面:1 1、222)2()2(ayax ;2 2、14922 zx ;3 3、22xz . .練習(xí)題答案練習(xí)題答案一、一、1 1、0112622 zyxz; 2 2、0244222 zyxzyx;3 3、(1,-2,2),4(1,-2,2),4; 4 4、, 1, 1, 1222222222222ybyaxzczbyzczax yczby, 12222 ; 5 5、不含與該坐標(biāo)軸同名的變量;、不含與該坐標(biāo)軸同名的變量; 6 6、xoy面上的雙曲線面上的
19、雙曲線yyx, 1422 ; 7 7、面面yoz上的直線上的直線 zayz, ; 8 8、平、平y(tǒng)行于行于軸的一條直線軸的一條直線, ,與與面面yoz面平行的平面;面平行的平面; 9 9、圓心在原點(diǎn)、圓心在原點(diǎn), ,半徑為半徑為 2 2 的圓的圓, ,軸為軸為軸軸z, ,半徑為半徑為 2 2 的圓柱面的圓柱面. .二、旋轉(zhuǎn)曲面二、旋轉(zhuǎn)曲面定義定義 以一條平面以一條平面曲線繞其平面上的曲線繞其平面上的一條直線旋轉(zhuǎn)一周一條直線旋轉(zhuǎn)一周所成的曲面稱為旋所成的曲面稱為旋轉(zhuǎn)曲面轉(zhuǎn)曲面. .這條定直線叫旋轉(zhuǎn)這條定直線叫旋轉(zhuǎn)曲面的曲面的軸軸二、旋轉(zhuǎn)曲面二、旋轉(zhuǎn)曲面定義定義 以一條平面以一條平面曲線繞其平面上
20、的曲線繞其平面上的一條直線旋轉(zhuǎn)一周一條直線旋轉(zhuǎn)一周所成的曲面稱為旋所成的曲面稱為旋轉(zhuǎn)曲面轉(zhuǎn)曲面. .這條定直線叫旋轉(zhuǎn)這條定直線叫旋轉(zhuǎn)曲面的曲面的軸軸二、旋轉(zhuǎn)曲面二、旋轉(zhuǎn)曲面定義定義 以一條平面以一條平面曲線繞其平面上的曲線繞其平面上的一條直線旋轉(zhuǎn)一周一條直線旋轉(zhuǎn)一周所成的曲面稱為旋所成的曲面稱為旋轉(zhuǎn)曲面轉(zhuǎn)曲面. .這條定直線叫旋轉(zhuǎn)這條定直線叫旋轉(zhuǎn)曲面的曲面的軸軸二、旋轉(zhuǎn)曲面二、旋轉(zhuǎn)曲面定義定義 以一條平面以一條平面曲線繞其平面上的曲線繞其平面上的一條直線旋轉(zhuǎn)一周一條直線旋轉(zhuǎn)一周所成的曲面稱為旋所成的曲面稱為旋轉(zhuǎn)曲面轉(zhuǎn)曲面. .這條定直線叫旋轉(zhuǎn)這條定直線叫旋轉(zhuǎn)曲面的曲面的軸軸二、旋轉(zhuǎn)曲面二、旋轉(zhuǎn)
21、曲面定義定義 以一條平面以一條平面曲線繞其平面上的曲線繞其平面上的一條直線旋轉(zhuǎn)一周一條直線旋轉(zhuǎn)一周所成的曲面稱為旋所成的曲面稱為旋轉(zhuǎn)曲面轉(zhuǎn)曲面. .這條定直線叫旋轉(zhuǎn)這條定直線叫旋轉(zhuǎn)曲面的曲面的軸軸二、旋轉(zhuǎn)曲面二、旋轉(zhuǎn)曲面定義定義 以一條平面以一條平面曲線繞其平面上的曲線繞其平面上的一條直線旋轉(zhuǎn)一周一條直線旋轉(zhuǎn)一周所成的曲面稱為旋所成的曲面稱為旋轉(zhuǎn)曲面轉(zhuǎn)曲面. .這條定直線叫旋轉(zhuǎn)這條定直線叫旋轉(zhuǎn)曲面的曲面的軸軸二、旋轉(zhuǎn)曲面二、旋轉(zhuǎn)曲面定義定義 以一條平面以一條平面曲線繞其平面上的曲線繞其平面上的一條直線旋轉(zhuǎn)一周一條直線旋轉(zhuǎn)一周所成的曲面稱為旋所成的曲面稱為旋轉(zhuǎn)曲面轉(zhuǎn)曲面. .這條定直線叫旋轉(zhuǎn)這條
22、定直線叫旋轉(zhuǎn)曲面的曲面的軸軸二、旋轉(zhuǎn)曲面二、旋轉(zhuǎn)曲面定義定義 以一條平面以一條平面曲線繞其平面上的曲線繞其平面上的一條直線旋轉(zhuǎn)一周一條直線旋轉(zhuǎn)一周所成的曲面稱為旋所成的曲面稱為旋轉(zhuǎn)曲面轉(zhuǎn)曲面. .這條定直線叫旋轉(zhuǎn)這條定直線叫旋轉(zhuǎn)曲面的曲面的軸軸二、旋轉(zhuǎn)曲面二、旋轉(zhuǎn)曲面定義定義 以一條平面以一條平面曲線繞其平面上的曲線繞其平面上的一條直線旋轉(zhuǎn)一周一條直線旋轉(zhuǎn)一周所成的曲面稱為旋所成的曲面稱為旋轉(zhuǎn)曲面轉(zhuǎn)曲面. .這條定直線叫旋轉(zhuǎn)這條定直線叫旋轉(zhuǎn)曲面的曲面的軸軸二、旋轉(zhuǎn)曲面二、旋轉(zhuǎn)曲面定義定義 以一條平面以一條平面曲線繞其平面上的曲線繞其平面上的一條直線旋轉(zhuǎn)一周一條直線旋轉(zhuǎn)一周所成的曲面稱為旋所成的
23、曲面稱為旋轉(zhuǎn)曲面轉(zhuǎn)曲面. .這條定直線叫旋轉(zhuǎn)這條定直線叫旋轉(zhuǎn)曲面的曲面的軸軸二、旋轉(zhuǎn)曲面二、旋轉(zhuǎn)曲面定義定義 以一條平面以一條平面曲線繞其平面上的曲線繞其平面上的一條直線旋轉(zhuǎn)一周一條直線旋轉(zhuǎn)一周所成的曲面稱為旋所成的曲面稱為旋轉(zhuǎn)曲面轉(zhuǎn)曲面. .這條定直線叫旋轉(zhuǎn)這條定直線叫旋轉(zhuǎn)曲面的曲面的軸軸二、旋轉(zhuǎn)曲面二、旋轉(zhuǎn)曲面定義定義 以一條平面以一條平面曲線繞其平面上的曲線繞其平面上的一條直線旋轉(zhuǎn)一周一條直線旋轉(zhuǎn)一周所成的曲面稱為旋所成的曲面稱為旋轉(zhuǎn)曲面轉(zhuǎn)曲面. .這條定直線叫旋轉(zhuǎn)這條定直線叫旋轉(zhuǎn)曲面的曲面的軸軸定義定義三、柱面三、柱面觀察柱面的形觀察柱面的形成過程成過程:平行于定直線并沿定曲線平行于定
24、直線并沿定曲線 移動(dòng)的直線移動(dòng)的直線 所形成的曲面稱為柱面所形成的曲面稱為柱面. .CL這條定曲線這條定曲線 叫柱面的叫柱面的準(zhǔn)線準(zhǔn)線,動(dòng)直線,動(dòng)直線 叫叫柱面的柱面的母線母線.CL定義定義三、柱面三、柱面觀察柱面的形觀察柱面的形成過程成過程:平行于定直線并沿定曲線平行于定直線并沿定曲線 移動(dòng)的直線移動(dòng)的直線 所形成的曲面稱為柱面所形成的曲面稱為柱面. .CL這條定曲線這條定曲線 叫柱面的叫柱面的準(zhǔn)線準(zhǔn)線,動(dòng)直線,動(dòng)直線 叫叫柱面的柱面的母線母線.CL定義定義三、柱面三、柱面觀察柱面的形觀察柱面的形成過程成過程:平行于定直線并沿定曲線平行于定直線并沿定曲線 移動(dòng)的直線移動(dòng)的直線 所形成的曲面稱
25、為柱面所形成的曲面稱為柱面. .CL這條定曲線這條定曲線 叫柱面的叫柱面的準(zhǔn)線準(zhǔn)線,動(dòng)直線,動(dòng)直線 叫叫柱面的柱面的母線母線.CL定義定義三、柱面三、柱面觀察柱面的形觀察柱面的形成過程成過程:平行于定直線并沿定曲線平行于定直線并沿定曲線 移動(dòng)的直線移動(dòng)的直線 所形成的曲面稱為柱面所形成的曲面稱為柱面. .CL這條定曲線這條定曲線 叫柱面的叫柱面的準(zhǔn)線準(zhǔn)線,動(dòng)直線,動(dòng)直線 叫叫柱面的柱面的母線母線.CL定義定義三、柱面三、柱面觀察柱面的形觀察柱面的形成過程成過程:平行于定直線并沿定曲線平行于定直線并沿定曲線 移動(dòng)的直線移動(dòng)的直線 所形成的曲面稱為柱面所形成的曲面稱為柱面. .CL這條定曲線這條定曲線 叫柱面的叫柱面的準(zhǔn)線準(zhǔn)線,動(dòng)直線,動(dòng)直線 叫叫柱面的柱面的母線母線.CL定義定義三、柱面三、柱面觀察柱面的形觀察柱面的形成過程成過程:平行于定直線并沿定曲線平行于定直線并沿定曲線 移動(dòng)的直線移動(dòng)的直線 所形成的曲面稱為柱面所形成的曲面稱為柱面. .CL這條定曲線這條定曲線 叫柱面的叫柱面的準(zhǔn)
溫馨提示
- 1. 本站所有資源如無(wú)特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 護(hù)理站年會(huì)主持稿范文
- 2025年九江理工職業(yè)學(xué)院馬克思主義基本原理概論期末考試模擬題帶答案解析(奪冠)
- 吶喊中的要課件
- 2024年雞東縣幼兒園教師招教考試備考題庫(kù)及答案解析(必刷)
- 2025年中國(guó)刑事警察學(xué)院馬克思主義基本原理概論期末考試模擬題帶答案解析(必刷)
- 2025年饒陽(yáng)縣招教考試備考題庫(kù)及答案解析(必刷)
- 2024年盤縣招教考試備考題庫(kù)及答案解析(奪冠)
- 2025年長(zhǎng)春職業(yè)技術(shù)大學(xué)馬克思主義基本原理概論期末考試模擬題附答案解析(必刷)
- 2025年濮陽(yáng)職業(yè)技術(shù)學(xué)院?jiǎn)握新殬I(yè)技能考試題庫(kù)帶答案解析
- 2025年湘中幼兒師范高等??茖W(xué)校單招職業(yè)適應(yīng)性考試題庫(kù)帶答案解析
- 2026年及未來5年中國(guó)化妝品玻璃瓶行業(yè)市場(chǎng)深度分析及發(fā)展趨勢(shì)預(yù)測(cè)報(bào)告
- T-CCCTA 0056-2025 纖維增強(qiáng)納米陶瓷復(fù)合卷材耐蝕作業(yè)技術(shù)規(guī)范
- 孕婦營(yíng)養(yǎng)DHA課件
- 2025年湖北煙草專賣局真題試卷及答案
- 2025-2026學(xué)年廣東省廣州113中學(xué)八年級(jí)(上)期中語(yǔ)文試卷
- 浙江省臺(tái)金七校聯(lián)盟2025-2026學(xué)年高一上學(xué)期11月期中聯(lián)考語(yǔ)文試題含答案
- 生物質(zhì)發(fā)電安全運(yùn)行方案
- 2025-2026學(xué)年高考二輪化學(xué)精準(zhǔn)復(fù)習(xí):電解質(zhì)溶液(課件)
- 實(shí)施指南(2025)《EJT 20050-2014 非反應(yīng)堆核設(shè)施通風(fēng)系統(tǒng)的設(shè)計(jì)及運(yùn)行準(zhǔn)則》
- 2026屆江西省南昌二中學(xué)物理九年級(jí)第一學(xué)期期末考試試題含解析
- 新安全生產(chǎn)法2025完整版
評(píng)論
0/150
提交評(píng)論