版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
1、高 三 診 斷 性 測(cè) 試數(shù)學(xué)參考答案及評(píng)分細(xì)則評(píng)分說明:1本解答給出了一種或幾種解法供參考,如果考生的解法與本解答不同,可根據(jù)試題 的主要考查內(nèi)容比照評(píng)分標(biāo)準(zhǔn)制定相應(yīng)的評(píng)分細(xì)則。 2對(duì)計(jì)算題,當(dāng)考生的解答在某一步出現(xiàn)錯(cuò)誤時(shí),如果后繼部分的解答未改變?cè)擃}的內(nèi)容和難度,可視影響的程度決定后繼部分的給分,但不得超過該部分正確解答應(yīng)給分?jǐn)?shù)的一半;如果后繼部分的解答有較嚴(yán)重的錯(cuò)誤,就不再給分。3解答右端所注分?jǐn)?shù),表示考生正確做到這一步應(yīng)得的累加分?jǐn)?shù)。4只給整數(shù)分?jǐn)?shù)。選擇題和填空題不給中間分。一、選擇題:本大題考查基礎(chǔ)知識(shí)和基本運(yùn)算。每小題 5 分,滿分 40 分。 1B 2B 3D 4B 5D 6C
2、7A 8D二、選擇題:本大題考查基礎(chǔ)知識(shí)和基本運(yùn)算。每小題 5 分,滿分 20 分。全部選對(duì)的得 5分,部分選對(duì)的得 2 分,有選錯(cuò)的得 0 分。9ABD 10AC 11BD 12ACD三、填空題:本大題考查基礎(chǔ)知識(shí)和基本運(yùn)算。每小題 5 分,滿分 20 分。ì - 1 >æ ö 3 1ï1 , x 1,13 ;14 - ,1 1 ,ç ÷ f x f x x;15答案不唯一,如: ( ) = - ( ) = íç ÷2 3 2xè ø ï -îx 1, x1
3、等;165 ; 54 四、解答題:本大題共 6 小題,共 70 分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17本小題主要考查等差數(shù)列、等比數(shù)列、遞推數(shù)列及數(shù)列求和等基礎(chǔ)知識(shí),考查運(yùn)算求解能力、邏輯推理能力和創(chuàng)新能力等,考查化歸與轉(zhuǎn)化思想、分類與整合思想、函數(shù)與方程思想、特殊與一般思想等,考查邏輯推理、數(shù)學(xué)運(yùn)算等核心素養(yǎng),體現(xiàn)基礎(chǔ)性和創(chuàng)新性滿分 10 分解法一:(1)因?yàn)?S +2 ,S ,S +1 成等差數(shù)列,所以 Sn - Sn+2 = Sn+1 - Sn ,···········
4、········1 分n n n所以 a + a + a +- - = ,·····································&
5、#183;·····································3 分n 2 n 1 n 1a + = - a + ,設(shè) a 的公比為 q ,則 q = -2 ,····
6、······································4 分 即 2 2 1n nn所以 ( ) ( )a = -2´ -2 = -2 ····
7、183;·················································
8、183;···········6 分n-1 nné2 -1+1ù é2 +1ùk k(2)依題意, ( ) ( )b - = ê ú = k k Î b = ê ú = k k ÎN , N , ················&
9、#183;7 分* * 2k 1 2kë 2 û ë 2 û所以T = (a b + a b + ································8 分10 1 1 3 3= (a1 + 2a3 += (a + a +
10、183;······································9 分1 2 3= -(a1 + 2a3 +=1´ 2 + 2´ 2 +3所以 4T =1´ 23 + 2
11、´ 25 + 1 ,10數(shù)學(xué)參考答案及評(píng)分細(xì)則 第 1頁(共 16頁)兩式相減得 ( ) 2´ 1- 4 14 25-3T = 2 + 2 + 2 + 5´ 2 = - 5´ 2 = - ´ 2 -3 5 11 11 11 ,101- 4 3 3 14 2所以 2 + 3186T = ´ = ····················
12、83;············································ 10 分11 109 9解法二:(1)因?yàn)?S +2 ,S ,S
13、 +1 成等差數(shù)列,所以 Sn+1 + Sn+2 = 2Sn ,n n n············································
14、;··················································
15、;············1 分 設(shè)a 的公比為 q ,n若 q =1,則 a = -2,S = -2n ,S + + S + = - n - S = - n ,所以 S + + S + ¹ S ,n n n n n n n n1 2 4 6, 2 4 1 2 2S +1 + S +2 = 2S 矛盾,不合題意; ·············
16、;·············································2 分 與n n n若 q ¹1,則 ( )(
17、) ( ) a1 1- q a 1- q a 1- qn n+1 n+2S = S = ,S =, , ···············3 分1 1n - - -n+1 n+21 q 1 q 1 q( ) ( ) ( ) a q a q a q1 1- n+1 1 1- n+2 2 1 1- n 所以 + = 1- q 1- q 1- q,整理得,qn+1 + qn+2 = 2qn ,即 q2 + q - 2 = 0 ,解得 q =1(舍去)或 q
18、 = -2 , ················································
19、3;·················4 分所以 a = -2´(-2) = (-2) ···························
20、3;······································6 分n-1 nné2k -1+1ù é2k +1ù(2)依題意, ( ) ( )b - k k N
21、 ,b k k N , ·················7 分= ê ú = Î * = ê ú = Î *2k 1 2kë 2 û ë 2 û所以T = (a b + a b )+ (a b + a b )+ (a b + a b )+ (a b + a b )+ (a b + a b ) ···
22、;· 8 分10 1 1 2 2 3 3 4 4 5 5 6 6 7 7 8 8 9 9 10 10= ( 1 + 2 )+ 2( 3 + 4 )+ 3( 5 + 6 )+4( 7 + 8 )+ 5( 9 + 10 ) ···························9 分a a a a a a a a a a=
23、 ´ ë - + - û + ´ ë - + - û + ë - + - û1 é( 2) ( 2) ù 2 é( 2) ( 2) ù 3é( 2) ( 2) ù2 3 4 5 6+ ë - + - û + ´ ë - + - û4é( 2)7 ( 2)8 ù 5 é( 2)9 ( 2)10 ù=1´ 2 + 2´ 2 + 3´ 2 +
24、4´ 2 + 5´ 2 = 2 +16 + 96 + 512+25603 5 7 9= 3186 ········································&
25、#183;·············································· 10 分 解法三:(1)因?yàn)?S +
26、2 ,S ,S +1 成等差數(shù)列,所以 2Sn = Sn+2 + Sn+1 , ·························1 分n n n當(dāng) n =1時(shí), 2S = S + S ,化簡(jiǎn)得 a = - a , ···········&
27、#183;···································2 分3 2 2 1 3 2設(shè)a 的公比為 q ,所以 q = -2 , ········
28、··················································
29、···4 分n當(dāng) q = -2 時(shí), ( )-2 - -2n+1S = ,因此 2Sn n3é- - (- ) ùn+12 2 2ë û= ,3( ) ( ) ( ) ( )+ + + é- - - ùn+1n 3 n 2 n 2 2 2 2-2 - -2 -2 - -2 -4 + -2 ë ûS +S = + = = ,n+2 n+13 3 3 3滿足 2S = S + + S + ,故 q = -2 符合題意n n 2 n 1所以 a = -2´(-2)n-1 = (-2
30、)n ·················································
31、83;·················6 分n數(shù)學(xué)參考答案及評(píng)分細(xì)則 第 2頁(共 16頁)(2)依題意, 10 5b1 =1,b2 =1,b3 = 2 ,b = ,b = ,b = ,b = ,4 2 5 3 6 3 7 4 b = ,8 4 b = ,9 5 b = ,·············
32、;··················································
33、;···········································7 分所以T10 = -2 + (-2)2 + 2´(-2)3 + 2&
34、#180;(-2)4 + 3´(-2)5 + 3´(-2)6 + 4´(-2)7 + 4´(-2)8 + 5´(-2)9 + 5´(-2)10 ·································
35、··················································
36、·······················8 分= - + - 2 + ´ - 3 + - 4 + ´ - 5 + - 6 + ´ - 7 + - 8 + ´ - 9 + - 10 2 ( 2) 2 ( 2) ( 2) 3 ( 2) ( 2) 4 ( 2) ( 2) 5 ( 2) ( 2) .9 分= 2 + 2 + 3
37、180; 2 + 4´ 2 + 5´ 2 = 2+16+96+512+ 25604 5 7 9= 3186 .10 分18本小題主要考查獨(dú)立事件的概率、互斥事件的概率,二項(xiàng)分布、數(shù)學(xué)期望等基礎(chǔ)知識(shí);考查數(shù)學(xué)建模能力,運(yùn)算求解能力,邏輯推理能力,創(chuàng)新能力以及閱讀能力等;考查統(tǒng)計(jì)與概率思想、分類與整合思想等;考查數(shù)學(xué)抽象,數(shù)學(xué)建模和數(shù)學(xué)運(yùn)算等核心素養(yǎng);體現(xiàn)應(yīng)用性和創(chuàng)新性滿分 12 分解法一:(1)甲滑雪用時(shí)比乙多5´36 =180 秒 = 3分鐘,因?yàn)榍叭紊鋼?,甲、乙兩人?被罰時(shí)間相同,所以在第四次射擊中,甲至少要比乙多命中 4 發(fā)子彈設(shè)“甲勝乙”為事件 A,“在
38、第四次射擊中,甲有 4 發(fā)子彈命中目標(biāo),乙均未命中目標(biāo)” 為事件 B, “在第四次射擊中,甲有 5 發(fā)子彈命中目標(biāo),乙至多有 1 發(fā)子彈命中目標(biāo)”為事件 C, ····································
39、3;·················································
40、3;···················1 分依題意,事件 B 和事件 C 是互斥事件,A=B+C, ·························
41、83;···············2 分4 5 5 5 4é ù1 æ 4 ö æ 1 ö æ 4 ö æ 1 ö æ 1 ö 3( ) ( )B = ´ç ÷ ´ç ÷ , C = ç ÷ ´ êç ÷ +
42、 ç ÷ ´ ú1 1P C P C5 5è ø è ø è ø ëê è ø è ø ûú5 5 4 5 4 4 4,························4 分 69
43、P A = P B + P C = . 12500所以, ( ) ( ) ( )69即甲勝乙的概率為 . ·········································&
44、#183;······························5 分12500(2)依題意得,甲選手在比賽中未擊中目標(biāo)的子彈數(shù)為 X ,乙選手在比賽中未擊中目標(biāo)的子彈數(shù)為Y ,則X æ ö æ ö1 1, ····
45、;·······································7 分è 5 ø è 4 ø11´ EX =1´ 20´ =
46、 4 (分鐘),································8 分 所以甲被罰時(shí)間的期望為 511´ EY =1´ 20´ = 5(分鐘), ·······
47、183;······························9 分 乙被罰時(shí)間的期望為4 又在賽道上甲選手滑行時(shí)間慢 3 分鐘,所以甲最終用時(shí)的期望比乙多 2 分鐘. ··········
48、183;··········································· 11 分因此,僅從最終用時(shí)考慮,乙選手水平更高. ··
49、·········································· 12 分解法二:(1)同解法一·····
50、183;·················································
51、183;·······················5 分?jǐn)?shù)學(xué)參考答案及評(píng)分細(xì)則 第 3頁(共 16頁)x æ ö4 4(2)設(shè)甲在一次射擊中命中目標(biāo)的子彈數(shù)為x ,則 Ex = ´ = ,所,所以 5 4è 5 ø 5 以甲在四次射擊中命中目標(biāo)的子彈數(shù)的期望為 4Ex =16 ,···
52、····························7 分設(shè)乙在一次射擊中命中目標(biāo)的子彈數(shù)為h ,則h æ 3 ö,所以 Eh = 5´ = ,所3 15 è 4 ø 4 4以乙在四次射擊中命中目標(biāo)的子彈數(shù)的期望為 4Eh =15 ,··
53、3;····························9 分 所以在四次射擊中,甲命中目標(biāo)的子彈數(shù)的期望比乙多 1,所以乙被罰時(shí)間的期望比 甲多 1 分鐘,又因?yàn)樵谫惖郎霞椎幕袝r(shí)間比乙慢 3 分鐘,所以甲最終用時(shí)的期望比 乙多 2 分鐘,······&
54、#183;·················································&
55、#183;····························· 11 分 因此,僅從最終用時(shí)考慮,乙選手水平更高.················
56、;······························ 12 分19本小題主要考查直線與直線、直線與平面、平面與平面的位置關(guān)系,直線與平面所成角、二面角等基礎(chǔ)知識(shí);考查空間想象能力,邏輯推理能力,運(yùn)算求解能力等;考查化歸與轉(zhuǎn)化思想,數(shù)形結(jié)合思想,函數(shù)與方程思想等;考查直觀想象,邏輯推理,數(shù)學(xué)
57、運(yùn)算等核心素養(yǎng);體現(xiàn)基礎(chǔ)性和綜合性滿分 12 分 解法一:(1)如圖,在 VAC 內(nèi)過 P 作 PM VC ,垂足為 M ,V在 VBC 內(nèi)過 M 作 MN VC 交VB 于 N ,M連結(jié) PN ,則直線 PN 即為直線l . ··························· 2 分理由如下:因?yàn)?PM VC , MN V
58、C , PM M ,lPN所以VC 平面 PMN ,AC由于過空間一點(diǎn)與已知直線垂直的平面有且只有一個(gè),所以平面 PMN 與平面a 重合,B因?yàn)槠矫?PMN 平面VAB = PN ,所以直線 PN 即為直線l . ····························4 分(2)因?yàn)?VAB 和 ABC 均為等邊三角
59、形,所以VA =VB, AC = BC ,又因?yàn)閂C =VC ,所以 VACVBC ,所以 ÐPVM = ÐNVM ,又VM =VM ,所以 RtVPMRtVNM ,所以VP =VN ,所以 2 VN = VB . ·······5 分3 如圖,設(shè) AB 的中點(diǎn)為 D ,連結(jié)VD,CD ,V因?yàn)?VAB 和 ABC 均為等邊三角形,M所以VA =VB, AC = BC ,所以 AB VD, AB CD ,P又因?yàn)閂D ,所 以 AB 平面VCD ,因?yàn)?AB Ì 平面 ABC ,所以平面 ABC
60、 平面VCD .AN COD在 VCD中,作VO CD,垂足為O,B因?yàn)槠矫?ABC 平面VCD = CD,VO Ì 平面VCD ,所以VO 平面 ABC ,所以 ÐVCD 是直線VC 與平面 ABC 所成的角,所以 ÐVCD = .························7 分3因?yàn)?VAB 和 ABC 均是邊長(zhǎng)為 4
61、 的等邊三角形,所以VD = DC = 2 3 ,所以 VCD 是等邊三角形,所以VO = 3, DO = OC = 3 .以 O為原點(diǎn),分別以O(shè)C,OV 的方向?yàn)?y 軸和 z 軸正方向建立如圖所示的空間直角坐標(biāo)數(shù)學(xué)參考答案及評(píng)分細(xì)則 第 4頁(共 16頁)系 O - xyz ,則 A(-2,- 3,0),B(2,- 3,0),C (0, 3,0),V (0, 0,3),··················
62、3;····················8 分所以CV = (0,- 3,3),CA = (-2,-2 3,0), AB = (4, 0, 0),ö4 5 3 öCP CV CA = = ç ÷= + = ç- - ÷, ,1 , PN AB ,0,0 .3 3 3 3 3 è 3 øè ø過
63、l 及點(diǎn)C 的平面為平面CPN ,設(shè)平面CPN 的法向量為 n = (x, y, z),PzVìïCP則 íïPNîn× n =0,0,ì4 5 3- x - y + z = 3 3ïï即íï =8x 0.ïî30,取 n = (0, 3,5) ,ADNBOxCy即平面CPN 的一個(gè)法向量為 n = (0, 3,5) .············
64、183;····································· 10 分易知,平面 ABC 的一個(gè)法向量為 m = (0, 0,1) , ······
65、····································· 11 分m × n 5 5 7所以 cos < m,n >= = =m n× 2 7 14,5 7所以過l 及點(diǎn)C 的平面
66、與平面 ABC 所成的銳二面角的余弦值為 ············ 12 分14 解法二:(1)如圖,在 VAB 內(nèi)過 P 作 PNAB ,交VB 于 N ,則直線 PN 即為直線l .························
67、83;·················································
68、83;··2 分 理由如下:V取VC 的中點(diǎn)Q ,連結(jié) AQ,BQ ,因?yàn)?VAB 和 ABC 均為等邊三角形,所以VA = AC,VB = BC ,所以VC AQ,VC BQ ,PlQ又因?yàn)?AQ ,所以VC 平面 ABQ ,NA C又因?yàn)閂C 平面a ,所以平面a平面 ABQ , 又因?yàn)槠矫鎍 平面VAB = l ,平面 ABQ 平面VAB = AB ,B所以 ABl ,所以直線 PN 即為直線l .··············
69、183;·········································4 分VP = 2VA,所以 2(2)由(1)知, PNAB ,因?yàn)?VN = VB . ·
70、;····························5 分3 3設(shè) AB 的中點(diǎn)為 D ,連結(jié)VD ,交 PN 于 G ,連結(jié)CG ,V因?yàn)?VAB 和 ABC 均為等邊三角形,所以VA =VB, AC = BC ,所以 AB VD, AB CD ,P又因?yàn)閂D ,GN所以 AB 平面VCD , AB Ì
71、; 平面 ABC ,A CO所以平面 ABC 平面VCD . DB在 VCD中,作VO CD,垂足為O,因?yàn)槠矫?ABC 平面VCD = CD,VO Ì 平面VCD ,所以VO 平面 ABC ,數(shù)學(xué)參考答案及評(píng)分細(xì)則 第 5頁(共 16頁)所以 ÐVCD 是直線VC 與平面 ABC 所成的角,所以 ÐVCD = ,·····················&
72、#183;7 分3因?yàn)?VAB 和 ABC 均是邊長(zhǎng)為 4 的等邊三角形,所以VD = DC = 2 3 , ÐVDC = ,31 2 3因?yàn)?ABPN ,所以 DG = DV = 由(1)知,過l 及點(diǎn)C 的平面為平面CPN ,3 3因?yàn)?AB Ë 平面CPN , PN Ì 平面CPN ,所以 AB平面CPN , ·····················
73、8 分設(shè)平面CPN 平面 ABC = l' ,因?yàn)?AB Ì 平面 ABC ,所以 ABl',因?yàn)?AB 平面VCD , CG Ì平面VCD,CD Ì平面VCD ,所以 AB CG, AB CD ,所以CG l ',CD l ',又因?yàn)镃G Ì平面CPN , CD Ì平面 ABC ,所以 ÐGCD 為平面CPN 與平面 ABC 所成的銳二面角的平面角,·············
74、;······· 10 分2 21在 GCD 中,由余弦定理得,CG2 = DG2 + DC2 - 2DG × DC ×cosÐGDC ,CG = ,3 ·····························
75、;··················································
76、;························· 11 分CG2 + DC2 - DG2 5 7所以 cosÐGCD = =2CG × DC 14,5 7所以過l 及點(diǎn)C 的平面與平面 ABC 所成的銳二面角的余弦值為 ·········
77、;··· 12 分1420本小題主要考查正弦定理、余弦定理及三角恒等變換等基礎(chǔ)知識(shí),考查邏輯推理能力、運(yùn)算求解能力等,考查化歸與轉(zhuǎn)化思想、函數(shù)與方程思想、數(shù)形結(jié)合思想等,考查數(shù)學(xué)運(yùn)算、邏輯推理等核心素養(yǎng),體現(xiàn)基礎(chǔ)性和綜合性滿分 12 分a + c - b2 2 2解法一:(1)在 ABC 中,由余弦定理得 cos B = ,····················
78、183;········1 分 2ac又因?yàn)?a = 6 ,b +12cos B = 2c , a2 c2 b212 2 2ac+ -所以b + × = c ,·····························&
79、#183;·····································2 分整理得b2 + c2 - 36 = bc .········
80、··················································
81、·················3 分在 ABC 中,由余弦定理得b2 + c2 - 36 = 2bccos A ,1所以bc = 2bccos A ,即 A = .······················
82、;·········································4 分cos 2p又因?yàn)?AÎ(0,p) ,所以 = ···
83、83;·················································
84、83;··········5 分A3(2)選 ······································
85、;··················································
86、;·······6 分 1 p因?yàn)?M 為 ABC 的內(nèi)心,所以 ÐBAD = ÐCAD= ÐBAC = , 2 6由SD = SD + SD ,·····························
87、83;··················· 7 分ABC ABD ACD得1 p = 1 × p + 1 × p bcsin c ADsin b ADsin ,2 3 2 6 2 6因?yàn)?AD=3 3 ,所以3 1 bc bc = 3 3 ´ (b + c) ,即b + c = . 8 分2 2 3數(shù)學(xué)參考答案及評(píng)分細(xì)則 第 6頁(共 16頁)由(1)可得b2 + c2 -
88、36 = bc ,即 (b + c)2 -3bc = 36 ,·····································9 分(bc) bc2所以 3bc 36 0- - = ,即 (bc + 9)( - 4) =
89、 0 ,········································ 10 分9 9又因?yàn)閎c > 0,所以bc = 36,····&
90、#183;·················································&
91、#183;·········· 11 分1 p 1 3所以 S bc ····································
92、;············ 12 分= sin = ´36´ = 9 3 DABC2 3 2 2 解法二:(1)因?yàn)?a = 6 , b +12cos B = 2c ,所以b + 2acosB = 2c ,·····················&
93、#183;·················································&
94、#183;··· 1 分在 ABC 中,由正弦定理得sin B + 2sin AcosB = 2sinC ,即 sin B + 2sin Acos B = 2sin(A + B) , ································&
95、#183;························ 2 分即 sin B + 2sin AcosB = 2sin AcosB + 2 cos Asin B ,即 sin B = 2 cos Asin B , ············
96、··················································
97、············ 3 分因?yàn)?BÎ(0,p),所以sin B ¹ 0,故 cos 1A = . ·····························
98、3;·······································4 分2p又因?yàn)?AÎ(0,p) ,所以 = ······
99、··················································
100、········5 分A3(2)選 ········································
101、183;·················································
102、183;····6 分 因?yàn)?M 為 ABC 的垂心,p p æ p öÐBMD = - ÐMBD = - ç - ÐACB÷ = ÐACB ,又 MD = 3 ,·················7 分 所以2 2 è 2 ø所以在 MBD 中, BD = MD × tan
103、208;BMD = 3 tanÐACB ,同理可得CD = 3 tanÐABC , ····································· 8 分又因?yàn)?BD + CD = 6 ,所以 3
104、tan ÐABC+ 3 tan ÐACB = 6 ,即 tanÐABC+tanÐACB = 2 3 , ······································
105、 9 分又因?yàn)樵?ABC 中, tan(ÐABC + ÐACB)= -tanÐBAC = - 3 ,tan ABC tan ACBÐ + Ð = - 所以 3 ,1- tan ÐABC tan ÐACB因此 tanÐABC tanÐACB=3 ······················&
106、#183;··········································· 10 分故 tanÐABC,tanÐACB 為方程
107、x2 - 2 3x + 3 = 0 兩根,即 tan ÐABC= tan ÐACB= 3 ,因?yàn)?ÐABC,ÐACB Î(0,p),p所以 ÐABC=ÐACB= ,所以 ABC 為等邊三角形, ····························
108、······· 11 分3所以 1 62 3 9 3SD = ´ ´ = ····································
109、183;························· 12 分ABC2 2解法三:(1)同解法一. ····················
110、183;·················································
111、183;··········5 分(2)選 ······································
112、··················································
113、·······6 分 因?yàn)?M 為 ABC 的垂心,數(shù)學(xué)參考答案及評(píng)分細(xì)則 第 7頁(共 16頁)p p所以 ÐAMB = p - ÐACB , Ð = - Ð = , ··························
114、3;··········8 分ABM BAC2 6 AM AB所以在 ABM 中,由正弦定理得 = sinÐABM sinÐAMB,AM AB=即 ···························
115、3;·············· 9 分p Ðsin ACBsin 6又因?yàn)樵?ABC 中,AB BC由正弦定理得 = ,··························10 分sin&
116、#208;ACB sinp3AM = BC 所以,因?yàn)?a = 6 ,所以 AM = 2 3 . ········································ 11 分p psin
117、 sin6 3又因?yàn)?MD = 3 ,所以 1 1 6 (2 3 3) 9 3SD = a × AD = ´ ´ + = .··················· 12 分ABC2 2解法四:(1)同解法一. ··············&
118、#183;·················································&
119、#183;················5 分(2)選 ································
120、;··················································
121、;·············6 分 1 p因?yàn)?M 為 ABC 的內(nèi)心,所以 ÐBAD = ÐCAD= ÐBAC = . 2 6在 ABD 中,由正弦定理得BD AD=psin Bsin6,因?yàn)?AD = 3 3 ,所以 2BD3 3= , sin B同理可得 2CD3 3 3 3= =psinC sin(B )+3.··········
122、··················································
123、·7 分3 3 3 3又因?yàn)?BD + CD = 6 ,所以 + =12,psin B sin(B )+3p é p ù即 4sin sin( + ) = 3 êsin + sin( + )úB B B B3 ë 3 û,p 1 3即 4sin Bsin(B + ) = 3(sin B + sin B + cos B),·················
124、183;·····················8 分3 2 2 p p即 4sin Bsin(B + ) = 3sin(B + ) , 3 6p p p p p即 4sin(B + ) - sin(B + ) + = 3sin(B + ) ,············
125、·····························9 分6 6 6 6 6é p p ù é p p ù p3 1 3 1即 4 sin(B + ) - cos(B + ) sin(B + ) + cos(B + ) = 3sin(B + )ê
126、50; ê ú2 6 2 6 2 6 2 6 6ë û ë û,數(shù)學(xué)參考答案及評(píng)分細(xì)則 第 8頁(共 16頁)即 4é3 sin2 ( + p) - 1 cos2 ( + p)ù = 3sin( + p) B B Bê ú,ë4 6 4 6 û 6p p é + p - ù é + p + ù =即 4sin2 (B + ) - 3sin(B + ) -1 = 0 ,即 sin( ) 1 4sin( ) 1 0B Bê
127、50; ê ú6 6 ë 6 û ë 6 û,···· 10 分因?yàn)閜A = ,所以 03< < 2 ,所以 ( , 5 )B B + Î ,p p p pB + Î ,3 6 6 6p p所以sin( + ) > 0,故sin(B + ) =1,B6 6 p p pB + = ,即 B = ,所以 ABC 為等邊三角形,···········
128、83;······················ 11 分 即6 2 3所以 1 62 3 9 3SD = ´ ´ = .···················
129、3;············································· 12 分ABC2 2解法五:(1)同解法一.
130、3;·················································
131、3;······························5 分(2)選 ··················
132、183;·················································
133、183;··························6 分 1 p因?yàn)?M 為 ABC 的內(nèi)心,所以 ÐBAD = ÐCAD= ÐBAC = . 又因?yàn)?AD = 3 3 , 2 63在 ABD 中,由余弦定理得 BD2 =c2 + 27 - 2´3 3 ´ c = c2 - 9c
134、 + 27 ,2同理可得CD2 = b2 - 9b + 27 ······························ 7 分又因?yàn)? × AB × AD ×sinBD S AB2 6= DABD = =CD S AC AD AC1 × ×
135、215;sinDACD2 6,所以c 9c 27 c2 - + = 2b - 9b + 27 b2 2,即 (b - c)3(b + c) - bc = 0 ,bc故 b = c 或b + c = . ·································&
136、#183;·············································8 分3(i)當(dāng)b = c 時(shí), ABC 為等邊三
137、角形,所以 1 62 3 9 3SD = ´ ´ = .ABC2 2 bc(ii)當(dāng)b + c = 時(shí),由(1)知b2 + c2 - 36 = bc ,即 (b + c)2 -3bc = 36 ,··········9 分3(bc) bc2所以 - 3bc - 36 = 0 ,即 (bc + 9)( - 4) = 0 ,·············&
138、#183;·························· 10 分9 9因?yàn)閎c > 0,所以bc = 36. ··················
139、··················································
140、·· 11 分又因?yàn)锳p= ,所以31 p 1 3SD bcsin 36 9 3= = ´ ´ = ABC2 3 2 2綜上所述, SD = 9 3 ··································&
141、#183;··································· 12 分ABC說 明 : 設(shè) ABC 的 外 接 圓 半 徑 為 R , 則 在 ABC 中 , 由 正 弦 定 理 得數(shù)學(xué)參考答案及評(píng)分細(xì)則 第 9頁(共 16頁)B
142、C 62R = = = 4 3psin sinA3,即 R = 2 3 ,因 為 M 為外心,所以 AM = 2 3 ,與 AM = 4 矛盾,故不能選21本小題主要考查橢圓的標(biāo)準(zhǔn)方程及簡(jiǎn)單幾何性質(zhì),直線與圓、橢圓的位置關(guān)系,平面向量等基礎(chǔ)知識(shí);考查運(yùn)算求解能力,邏輯推理能力,直觀想象能力和創(chuàng)新能力等;考查數(shù)形結(jié)合思想,函數(shù)與方程思想,化歸與轉(zhuǎn)化思想等;考查直觀想象,邏輯推理, 數(shù)學(xué)運(yùn)算等核心素養(yǎng);體現(xiàn)基礎(chǔ)性,綜合性與創(chuàng)新性滿分 12 分解法一:(1)以O(shè) 為坐標(biāo)原點(diǎn),橢圓C 的長(zhǎng)軸、短軸所在直線分別為 x 軸、 y 軸,建立平 面直角坐標(biāo)系,如圖. ···
143、83;·················································
144、83;························1 分 設(shè)橢圓的長(zhǎng)半軸為 a ,短半軸為 b ,半焦距為 c ,ìc 2ï ,=a 2ïïï - = -6 6íb 1 ,依題意得3 3ïï = +a b c ,2 2 2ïïîì =a
145、 2,ïíb =1,解得ï =c 1,î·········· 3 分yOAxB所以C 的方程為x22+ y2 =1 ····························
146、3;······································4 分(2)因?yàn)橹本€ AB與以O(shè)A為直徑的圓的一個(gè)交點(diǎn)在圓O 上,所以直線 AB 與圓O 相切 ····································
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 講師自我介紹制作
- 2026江蘇南通市啟東市王鮑鎮(zhèn)綜合行政執(zhí)法輔助人員招聘7人備考題庫(含答案詳解)
- 2025 用戶增長(zhǎng)運(yùn)營師能力試題及答案
- 2026四川中煙投資有限責(zé)任公司多元化企業(yè)(第一次)員工招聘36人備考考試試題及答案解析
- 2026內(nèi)蒙古銀行社會(huì)招聘20人備考題庫附答案詳解
- 2026中國科學(xué)院分子植物科學(xué)卓越創(chuàng)新中心分子植物卓越中心周濟(jì)研究組招聘博士后備考題庫含答案詳解
- 2026上半年安徽事業(yè)單位聯(lián)考銅陵市義安區(qū)招聘27人備考考試題庫及答案解析
- 2026上半年云南事業(yè)單位聯(lián)考昭通招聘1169人考試參考試題及答案解析
- 2026新疆和田人力資源管理服務(wù)中心有限責(zé)任公司及和田佰安人力資源有限責(zé)任公司招聘10人備考考試題庫及答案解析
- 2025至2030中國農(nóng)業(yè)無人機(jī)植保作業(yè)效率與農(nóng)戶采納意愿研究報(bào)告
- 系統(tǒng)性紅斑狼瘡的飲食護(hù)理
- 電氣試驗(yàn)報(bào)告模板
- 重慶市沙坪壩小學(xué)小學(xué)語文五年級(jí)上冊(cè)期末試卷
- 陶瓷巖板應(yīng)用技術(shù)規(guī)程
- 中藥制劑技術(shù)中職PPT完整全套教學(xué)課件
- 龍虎山正一日誦早晚課
- WORD版A4橫版密封條打印模板(可編輯)
- 1比較思想政治教育
- 藝術(shù)課程標(biāo)準(zhǔn)(2022年版)
- JJF 1654-2017平板電泳儀校準(zhǔn)規(guī)范
- 上海市工業(yè)用水技術(shù)中心-工業(yè)用水及廢水處理課件
評(píng)論
0/150
提交評(píng)論