專題復(fù)習(xí)橢圓+雙曲線拋物線_第1頁
專題復(fù)習(xí)橢圓+雙曲線拋物線_第2頁
專題復(fù)習(xí)橢圓+雙曲線拋物線_第3頁
專題復(fù)習(xí)橢圓+雙曲線拋物線_第4頁
全文預(yù)覽已結(jié)束

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

1、專題復(fù)習(xí)橢圓、雙曲線、拋物線 2014年2月【高考考情解讀】高考對(duì)本節(jié)知識(shí)的考查主要有以下兩種形式:1以選擇、填空的形式考查,主要考查圓錐曲線的標(biāo)準(zhǔn)方程、性質(zhì)(特別是離心率),以及圓錐曲線之間的關(guān)系,突出考查基礎(chǔ)知識(shí)、基本技能,屬于基礎(chǔ)題.2以解答題的形式考查,主要考查圓錐曲線的定義、性質(zhì)及標(biāo)準(zhǔn)方程的求解,直線與圓錐曲線的位置關(guān)系,常常在知識(shí)的交匯點(diǎn)處命題,有時(shí)以探究的形式出現(xiàn),有時(shí)以證明題的形式出現(xiàn)該部分題目多數(shù)為綜合性問題,考查學(xué)生分析問題、解決問題的能力,綜合運(yùn)用知識(shí)的能力等,屬于中、高檔題,一般難度較大【主干知識(shí)梳理】圓錐曲線的定義、標(biāo)準(zhǔn)方程與幾何性質(zhì)名稱橢圓雙曲線拋物線定義|PF1|

2、PF2|2a(2a|F1F2|)|PF1|PF2|2a(2ab0)1 (a0,b0)y22px (p0)圖形幾何性質(zhì)范圍|x|a,|y|b|x|ax0頂點(diǎn)(a,0),(0,b)(a,0)(0,0)對(duì)稱性關(guān)于x軸,y軸和原點(diǎn)對(duì)稱關(guān)于x軸對(duì)稱焦點(diǎn)(c,0)(,0)軸長(zhǎng)軸長(zhǎng)2a,短軸長(zhǎng)2b實(shí)軸長(zhǎng)2a,虛軸長(zhǎng)2b幾何性質(zhì)離心率e (0e1)e1準(zhǔn)線x漸近線yx【熱點(diǎn)分類突破】考點(diǎn)一圓錐曲線的定義與標(biāo)準(zhǔn)方程例1(1)設(shè)橢圓1和雙曲線x21的公共焦點(diǎn)分別為F1、F2,P為這兩條曲線的一個(gè)交點(diǎn),則|PF1|PF2|的值等于_(2)已知直線yk(x2)(k0)與拋物線C:y28x相交于A、B兩點(diǎn),F(xiàn)為C的焦點(diǎn)

3、若|FA|2|FB|,則k_.研究提高:(1)對(duì)于圓錐曲線的定義不僅要熟記,還要深入理解細(xì)節(jié)部分:比如橢圓的定義中要求|PF1|PF2|F1F2|,雙曲線的定義中要求|PF1|PF2|F1F2|,拋物線上的點(diǎn)到焦點(diǎn)的距離與到準(zhǔn)線的距離相等的轉(zhuǎn)化(2)注意數(shù)形結(jié)合,提倡畫出合理草圖變式練習(xí):(1)(2012山東)已知橢圓C:1(ab0)的離心率為.雙曲線x2y21的漸近線與橢圓C有四個(gè)交點(diǎn),以這四個(gè)交點(diǎn)為頂點(diǎn)的四邊形的面積為16,則橢圓C的方程為 ()A.1 B.1 C.1 D. 1(2)如圖,過拋物線y22px(p0)的焦點(diǎn)F的直線交拋物線于點(diǎn)A,B,交其準(zhǔn)線l于點(diǎn)C,若|BC|2|BF|,且

4、|AF|3,則此拋物線的方程為()Ay29x By26x Cy23x Dy2x考點(diǎn)二圓錐曲線的幾何性質(zhì)例2(1)(2013遼寧)已知橢圓C:1(ab0)的左焦點(diǎn)為F,C與過原點(diǎn)的直線相交于A,B兩點(diǎn),連接AF,BF.若|AB|10,|BF|8,cosABF,則C的離心率為() A. B. C. D.(2)已知雙曲線1(a0,b0)的左、右焦點(diǎn)分別為F1、F2,點(diǎn)P在雙曲線的右支上,且|PF1|4|PF2|,則雙曲線的離心率e的最大值為_研究提高:解決橢圓和雙曲線的離心率的求值及范圍問題其關(guān)鍵就是確立一個(gè)關(guān)于a,b,c的方程或不等式,再根據(jù)a,b,c的關(guān)系消掉b得到a,c的關(guān)系式建立關(guān)于a,b,

5、c的方程或不等式,要充分利用橢圓和雙曲線的幾何性質(zhì)、點(diǎn)的坐標(biāo)的范圍等變式練習(xí):(1)已知F是橢圓C的一個(gè)焦點(diǎn),B是短軸的一個(gè)端點(diǎn),線段BF的延長(zhǎng)線交C于點(diǎn)D,且2 ,則C的離心率為_(2)過雙曲線1(a0,b0)的左焦點(diǎn)F作圓x2y2的切線,切點(diǎn)為E,延長(zhǎng)FE交雙曲線右支于點(diǎn)P,若E為PF的中點(diǎn),則雙曲線的離心率為_考點(diǎn)三直線與圓錐曲線的位置關(guān)系例3已知橢圓C:1(ab0)的離心率e,點(diǎn)F為橢圓的右焦點(diǎn),點(diǎn)A、B分別為橢圓的左、右頂點(diǎn),點(diǎn)M為橢圓的上頂點(diǎn),且滿足1. (1)求橢圓C的方程;(2)是否存在直線l,當(dāng)直線l交橢圓于P、Q兩點(diǎn)時(shí),使點(diǎn)F恰為PQM的垂心?若存在,求出直線l的方程;若不

6、存在,請(qǐng)說明理由研究提高:(1)對(duì)于弦中點(diǎn)問題常用“根與系數(shù)的關(guān)系”或“點(diǎn)差法”求解,在使用根與系數(shù)的關(guān)系時(shí),要注意使用條件0,在用“點(diǎn)差法”時(shí),要檢驗(yàn)直線與圓錐曲線是否相交(2)涉及弦長(zhǎng)的問題中,應(yīng)熟練地利用根與系數(shù)關(guān)系、設(shè)而不求法計(jì)算弦長(zhǎng);涉及垂直關(guān)系時(shí)也往往利用根與系數(shù)關(guān)系、設(shè)而不求法簡(jiǎn)化運(yùn)算;涉及過焦點(diǎn)的弦的問題,可考慮用圓錐曲線的定義求解變式練習(xí):(2013北京)已知A,B,C是橢圓W:y21上的三個(gè)點(diǎn),O是坐標(biāo)原點(diǎn)(1) 當(dāng)點(diǎn)B是W的右頂點(diǎn),且四邊形OABC為菱形時(shí),求此菱形的面積;(2)當(dāng)點(diǎn)B不是W的頂點(diǎn)時(shí),判斷四邊形OABC是否可能為菱形,并說明理由【規(guī)律方法總結(jié)】1對(duì)涉及圓錐曲線上點(diǎn)到焦點(diǎn)距離或焦點(diǎn)弦問題,恰當(dāng)選用定義解題,會(huì)效果明顯,定義中的定值是標(biāo)準(zhǔn)方程的基礎(chǔ)2橢圓、雙曲線的方程形式上可統(tǒng)一為Ax2By21,其中 A、B是不等的常數(shù),AB0時(shí),表示焦點(diǎn)在y軸上的橢圓;BA0時(shí),表示焦點(diǎn)在x軸上的橢圓;AB0)的焦點(diǎn)弦

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

最新文檔

評(píng)論

0/150

提交評(píng)論