版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
1、 第二章 機動 目錄 上頁 下頁 返回 結(jié)束 第五節(jié)極限存在準則及兩個重要極限二、二、 兩個重要極限兩個重要極限 一、函數(shù)極限與數(shù)列極限的關(guān)系一、函數(shù)極限與數(shù)列極限的關(guān)系 及夾逼準則及夾逼準則一、一、 函數(shù)極限與數(shù)列極限的關(guān)系及夾逼準則函數(shù)極限與數(shù)列極限的關(guān)系及夾逼準則1. 函數(shù)極限與數(shù)列極限的關(guān)系函數(shù)極限與數(shù)列極限的關(guān)系定理定理1. Axfxx)(lim0:nx,0 xxn有定義,),(0nxxnAxfnn)(lim有)(nxfxnx機動 目錄 上頁 下頁 返回 結(jié)束 定理定理1.Axfxx)(lim0 :nx)(,0nnxfxx 有定義, )(0nxxn且.)(limAxfnn有說明說明:
2、 此定理常用于判斷函數(shù)極限不存在 .法法1 找一個數(shù)列:nx,0 xxn, )(0nxxn且不存在 .)(limnnxf使法法2 找兩個趨于0 x的不同數(shù)列nx及,nx使)(limnnxf)(limnnxf)(x)(nx機動 目錄 上頁 下頁 返回 結(jié)束 例例1. 證明xx1sinlim0不存在 .證證: 取兩個趨于 0 的數(shù)列nxn21及221nxn有nnx1sinlimnnx1sinlim由定理 1 知xx1sinlim0不存在 .),2, 1(n02sinlimnn1)2sin(lim2nn機動 目錄 上頁 下頁 返回 結(jié)束 2. 函數(shù)極限存在的夾逼準則函數(shù)極限存在的夾逼準則定理定理2.
3、,),(0時當(dāng)xxAxhxgxxxx)(lim)(lim00, )()(xhxg)(xfAxfxx)(lim0)0( Xx)(x)(x)(x且( 利用定理1及數(shù)列的夾逼準則可證 )機動 目錄 上頁 下頁 返回 結(jié)束 1sincosxxx圓扇形AOB的面積二、二、 兩個重要極限兩個重要極限 1sinlim. 10 xxx證證: 當(dāng)即xsin21x21xtan21亦即)0(tansin2xxxx),0(2x時,)0(2 x, 1coslim0 xx1sinlim0 xxx顯然有AOB 的面積AOD的面積DCBAx1oxxxcos1sin1故有注 目錄 上頁 下頁 返回 結(jié)束 例例2. 求.tanl
4、im0 xxx解解: xxxtanlim0 xxxxcos1sinlim0 xxxsinlim0 xxcos1lim01例例3. 求.arcsinlim0 xxx解解: 令,arcsin xt 則,sintx 因此原式tttsinlim0 1lim0tttsin1機動 目錄 上頁 下頁 返回 結(jié)束 nnnRcossinlim2Rn例例4. 求.cos1lim20 xxx解解: 原式 =2220sin2limxxx212121例例5. 已知圓內(nèi)接正 n 邊形面積為證明: .lim2RAnn證證: nnAlimnnnnRnAcossin22R說明說明: 計算中注意利用1)()(sinlim0)(x
5、xx20sinlimx2x2x21機動 目錄 上頁 下頁 返回 結(jié)束 2.exxx)1(lim1證證: 當(dāng)0 x時, 設(shè), 1nxn則xx)1 (111)1 (nnnn)1 (11nnn)1 (lim11 limn111)1 (nn111ne11)1 (limnnn1)1(lim11)(nnnneexxx)1(lim1機動 目錄 上頁 下頁 返回 結(jié)束 當(dāng)x, ) 1( tx則,t從而有xxx)1 (lim1) 1(11)1 (limttt) 1(1)(limtttt11)1 (limttt)1 ()1(lim11tttte故exxx)1 (lim1說明說明: 此極限也可寫為ezzz1)1 (
6、lim0時, 令機動 目錄 上頁 下頁 返回 結(jié)束 例例6. 求.)1 (lim1xxx解解: 令,xt則xxx)1 (lim1ttt )1 (lim1 1limttt)1 (1e1說明說明 :若利用,)1 (lim)()(1)(exxx機動 目錄 上頁 下頁 返回 結(jié)束 則 原式111)1 (limexxxlimx例例7. 求.)cos(sinlim11xxxx解解: 原式 =2)cos(sinlim211xxxx2)sin1 (lim2xxx)sin1(2xexx22sin機動 目錄 上頁 下頁 返回 結(jié)束 x2sin1的不同數(shù)列內(nèi)容小結(jié)內(nèi)容小結(jié)1. 函數(shù)極限與數(shù)列極限關(guān)系的應(yīng)用(1) 利用數(shù)列極限判別函數(shù)極限不存在 (2) 數(shù)列極限存在的夾逼準則法法1 找一個數(shù)列:nx,0 xxn)(0nxxn且使)(limnnxf法法2 找兩個趨于0 xnx及 ,nx使)(limnnxf)(limnnxf不存在 .函數(shù)極限存在的夾逼準則機動 目錄 上頁 下頁 返回 結(jié)束 2. 兩個重要極限1sinlim) 1 (0e)11(lim)2(或e1)1(lim0注注: 代表相同的表達式機動 目錄 上頁 下頁 返回 結(jié)束 思考與練習(xí)思考與練習(xí)填空題填空題 ( 14 );_sinlim. 1xxx;_1sin
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 機器學(xué)習(xí)在合規(guī)檢查中的應(yīng)用
- 2026年消防安全員操作技能測試題火災(zāi)預(yù)防與應(yīng)急處置
- 2026年環(huán)境心理學(xué)與公共空間設(shè)計應(yīng)用問題集
- 2026年外貿(mào)業(yè)務(wù)員國際商務(wù)知識測試題集
- 2026年機械工程師機械設(shè)計與制造技術(shù)問題庫
- 2026年醫(yī)學(xué)考試寶典醫(yī)學(xué)基礎(chǔ)知識與臨床實踐題集
- 2026年環(huán)境科學(xué)與工程綜合練習(xí)題水質(zhì)監(jiān)測與處理技術(shù)
- 2026年食品藥品安全法規(guī)知識測試
- 2026年軟件開發(fā)工程實踐案例功能開發(fā)測試與修復(fù)練習(xí)題
- 2025 小學(xué)二年級道德與法治上冊友好交流使用禮貌用語對話交流課件
- 2026河北石家莊技師學(xué)院選聘事業(yè)單位工作人員36人備考考試試題附答案解析
- 云南省2026年普通高中學(xué)業(yè)水平選擇性考試調(diào)研測試歷史試題(含答案詳解)
- GB 4053.3-2025固定式金屬梯及平臺安全要求第3部分:工業(yè)防護欄桿及平臺
- 2025年下屬輔導(dǎo)技巧課件2025年
- 企業(yè)法治建設(shè)培訓(xùn)課件
- QSY06503.14-2020石油煉制與化工裝置工藝設(shè)計包編制規(guī)范 - 副本
- 柜式七氟丙烷-氣體滅火系統(tǒng)-安裝與施工-方案
- 核醫(yī)學(xué)全身骨顯像骨顯像課件
- 昌樂縣鎮(zhèn)區(qū)基準地價更新修正體系匯編(完整版)資料
- 項目管理學(xué)課件戚安邦全
- 羽毛球二級裁判員試卷
評論
0/150
提交評論