湖北省襄陽2022年高三最后一卷數(shù)學試卷含解析_第1頁
湖北省襄陽2022年高三最后一卷數(shù)學試卷含解析_第2頁
湖北省襄陽2022年高三最后一卷數(shù)學試卷含解析_第3頁
湖北省襄陽2022年高三最后一卷數(shù)學試卷含解析_第4頁
湖北省襄陽2022年高三最后一卷數(shù)學試卷含解析_第5頁
已閱讀5頁,還剩14頁未讀 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

1、2021-2022高考數(shù)學模擬試卷注意事項:1答題前,考生先將自己的姓名、準考證號碼填寫清楚,將條形碼準確粘貼在條形碼區(qū)域內。2答題時請按要求用筆。3請按照題號順序在答題卡各題目的答題區(qū)域內作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試卷上答題無效。4作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5保持卡面清潔,不要折暴、不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1若復數(shù)z滿足,則復數(shù)z在復平面內對應的點在( )A第一象限B第二象限C第三象限D第四象限2已知分別為雙曲線的左、右

2、焦點,過的直線與雙曲線的左、右兩支分別交于兩點,若,則雙曲線的離心率為( )AB4C2D3五行學說是華夏民族創(chuàng)造的哲學思想,是華夏文明重要組成部分.古人認為,天下萬物皆由金、木、水、火、土五類元素組成,如圖,分別是金、木、水、火、土彼此之間存在的相生相克的關系.若從5類元素中任選2類元素,則2類元素相生的概率為( )ABCD4已知雙曲線C的兩條漸近線的夾角為60,則雙曲線C的方程不可能為( )ABCD5設函數(shù)的定義域為,滿足,且當時,.若對任意,都有,則的取值范圍是( ).ABCD6已知是虛數(shù)單位,則( )ABCD7在等差數(shù)列中,若(),則數(shù)列的最大值是( )ABC1D38直角坐標系中,雙曲線

3、()與拋物線相交于、兩點,若是等邊三角形,則該雙曲線的離心率( )ABCD9已知雙曲線的右焦點為,過原點的直線與雙曲線的左、右兩支分別交于兩點,延長交右支于點,若,則雙曲線的離心率是( )ABCD10設全集,集合,則( )ABCD11已知集合,則的值域為()ABCD12正的邊長為2,將它沿邊上的高翻折,使點與點間的距離為,此時四面體的外接球表面積為( )ABCD二、填空題:本題共4小題,每小題5分,共20分。13函數(shù)的定義域為_.14(5分)函數(shù)的定義域是_15如圖所示,邊長為1的正三角形中,點,分別在線段,上,將沿線段進行翻折,得到右圖所示的圖形,翻折后的點在線段上,則線段的最小值為_16已

4、知復數(shù)z是純虛數(shù),則實數(shù)a_,|z|_三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17(12分)已知實數(shù)x,y,z滿足,證明:.18(12分)已知曲線,直線:(為參數(shù)).(I)寫出曲線的參數(shù)方程,直線的普通方程;(II)過曲線上任意一點作與夾角為的直線,交于點,的最大值與最小值19(12分)在; 這三個條件中任選一個,補充在下面問題中的橫線上,并解答相應的問題.在中,內角A,B,C的對邊分別為a,b,c,且滿足_,求的面積.20(12分)在新中國成立70周年國慶閱兵慶典中,眾多群眾在臉上貼著一顆紅心,以此表達對祖國的熱愛之情,在數(shù)學中,有多種方程都可以表示心型曲線,其中有著名

5、的笛卡爾心型曲線,如圖,在直角坐標系中,以原點O為極點,x軸正半軸為極軸建立極坐標系.圖中的曲線就是笛卡爾心型曲線,其極坐標方程為(),M為該曲線上的任意一點.(1)當時,求M點的極坐標;(2)將射線OM繞原點O逆時針旋轉與該曲線相交于點N,求的最大值.21(12分)已知是等腰直角三角形,分別為的中點,沿將折起,得到如圖所示的四棱錐()求證:平面平面()當三棱錐的體積取最大值時,求平面與平面所成角的正弦值22(10分)已知橢圓的焦距為2,且過點(1)求橢圓的方程;(2)設為的左焦點,點為直線上任意一點,過點作的垂線交于兩點,()證明:平分線段(其中為坐標原點);()當取最小值時,求點的坐標參考

6、答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1A【解析】化簡復數(shù),求得,得到復數(shù)在復平面對應點的坐標,即可求解.【詳解】由題意,復數(shù)z滿足,可得,所以復數(shù)在復平面內對應點的坐標為位于第一象限故選:A.【點睛】本題主要考查了復數(shù)的運算,以及復數(shù)的幾何表示方法,其中解答中熟記復數(shù)的運算法則,結合復數(shù)的表示方法求解是解答的關鍵,著重考查了推理與計算能力,屬于基礎題.2A【解析】由已知得,由已知比值得,再利用雙曲線的定義可用表示出,用勾股定理得出的等式,從而得離心率【詳解】.又,可令,則.設,得,即,解得,,由得,該雙曲線的離心率.故選:A

7、.【點睛】本題考查求雙曲線的離心率,解題關鍵是由向量數(shù)量積為0得出垂直關系,利用雙曲線的定義把雙曲線上的點到焦點的距離都用表示出來,從而再由勾股定理建立的關系3A【解析】列舉出金、木、水、火、土任取兩個的所有結果共10種,其中2類元素相生的結果有5種,再根據(jù)古典概型概率公式可得結果.【詳解】金、木、水、火、土任取兩類,共有:金木、金水、金火、金土、木水、木火、木土、水火、水土、火土10種結果,其中兩類元素相生的有火木、火土、木水、水金、金土共5結果,所以2類元素相生的概率為,故選A.【點睛】本題主要考查古典概型概率公式的應用,屬于基礎題,利用古典概型概率公式求概率時,找準基本事件個數(shù)是解題的關

8、鍵,基本亊件的探求方法有 (1)枚舉法:適合給定的基本事件個數(shù)較少且易一一列舉出的;(2)樹狀圖法:適合于較為復雜的問題中的基本亊件的探求.在找基本事件個數(shù)時,一定要按順序逐個寫出:先,. ,再,.依次. 這樣才能避免多寫、漏寫現(xiàn)象的發(fā)生.4C【解析】判斷出已知條件中雙曲線的漸近線方程,求得四個選項中雙曲線的漸近線方程,由此確定選項.【詳解】兩條漸近線的夾角轉化為雙曲漸近線與軸的夾角時要分為兩種情況依題意,雙曲漸近線與軸的夾角為30或60,雙曲線的漸近線方程為或.A選項漸近線為,B選項漸近線為,C選項漸近線為,D選項漸近線為.所以雙曲線的方程不可能為.故選:C【點睛】本小題主要考查雙曲線的漸近

9、線方程,屬于基礎題.5B【解析】求出在的解析式,作出函數(shù)圖象,數(shù)形結合即可得到答案.【詳解】當時,又,所以至少小于7,此時,令,得,解得或,結合圖象,故.故選:B.【點睛】本題考查不等式恒成立求參數(shù)的范圍,考查學生數(shù)形結合的思想,是一道中檔題.6B【解析】根據(jù)復數(shù)的乘法運算法則,直接計算,即可得出結果.【詳解】.故選B【點睛】本題主要考查復數(shù)的乘法,熟記運算法則即可,屬于基礎題型.7D【解析】在等差數(shù)列中,利用已知可求得通項公式,進而,借助函數(shù)的的單調性可知,當時, 取最大即可求得結果.【詳解】因為,所以,即,又,所以公差,所以,即,因為函數(shù),在時,單調遞減,且;在時,單調遞減,且.所以數(shù)列的

10、最大值是,且,所以數(shù)列的最大值是3.故選:D.【點睛】本題考查等差數(shù)列的通項公式,考查數(shù)列與函數(shù)的關系,借助函數(shù)單調性研究數(shù)列最值問題,難度較易.8D【解析】根據(jù)題干得到點A坐標為,代入拋物線得到坐標為,再將點代入雙曲線得到離心率.【詳解】因為三角形OAB是等邊三角形,設直線OA為,設點A坐標為,代入拋物線得到x=2b,故點A的坐標為,代入雙曲線得到 故答案為:D.【點睛】求雙曲線的離心率(或離心率的取值范圍),常見有兩種方法:求出,代入公式;只需要根據(jù)一個條件得到關于的齊次式,結合轉化為的齊次式,然后等式(不等式)兩邊分別除以或轉化為關于的方程(不等式),解方程(不等式)即可得 (的取值范圍

11、).9D【解析】設雙曲線的左焦點為,連接,設,則,和中,利用勾股定理計算得到答案.【詳解】設雙曲線的左焦點為,連接,設,則,根據(jù)對稱性知四邊形為矩形,中:,即,解得;中:,即,故,故.故選:.【點睛】本題考查了雙曲線離心率,意在考查學生的計算能力和綜合應用能力.10D【解析】求解不等式,得到集合A,B,利用交集、補集運算即得解【詳解】由于 故集合或 故集合 故選:D【點睛】本題考查了集合的交集和補集混合運算,考查了學生概念理解,數(shù)學運算的能力,屬于中檔題.11A【解析】先求出集合,化簡=,令,得由二次函數(shù)的性質即可得值域.【詳解】由,得 ,令, ,所以得 , 在 上遞增,在上遞減, ,所以,即

12、 的值域為故選A【點睛】本題考查了二次不等式的解法、二次函數(shù)最值的求法,換元法要注意新變量的范圍,屬于中檔題12D【解析】如圖所示,設的中點為,的外接圓的圓心為,四面體的外接球的球心為,連接,利用正弦定理可得,利用球心的性質和線面垂直的性質可得四邊形為平行四邊形,最后利用勾股定理可求外接球的半徑,從而可得外接球的表面積.【詳解】如圖所示,設的中點為,外接圓的圓心為,四面體的外接球的球心為,連接,則平面,.因為,故,因為,故.由正弦定理可得,故,又因為,故.因為,故平面,所以,因為平面,平面,故,故,所以四邊形為平行四邊形,所以,所以,故外接球的半徑為,外接球的表面積為.故選:D.【點睛】本題考

13、查平面圖形的折疊以及三棱錐外接球表面積的計算,還考查正弦定理和余弦定理,折疊問題注意翻折前后的變量與不變量,外接球問題注意先確定外接球的球心的位置,然后把半徑放置在可解的直角三角形中來計算,本題有一定的難度.二、填空題:本題共4小題,每小題5分,共20分。13【解析】對數(shù)函數(shù)的定義域需滿足真數(shù)大于0,再由指數(shù)型不等式求解出解集即可.【詳解】對函數(shù)有意義,即.故答案為:【點睛】本題考查求對數(shù)函數(shù)的定義域,還考查了指數(shù)型不等式求解,屬于基礎題.14【解析】要使函數(shù)有意義,則,即,解得,故函數(shù)的定義域是15【解析】設,在中利用正弦定理得出關于的函數(shù),從而可得的最小值【詳解】解:設,則,在中,由正弦定

14、理可得,即,當即時,取得最小值故答案為【點睛】本題考查正弦定理解三角形的應用,屬中檔題161 1 【解析】根據(jù)復數(shù)運算法則計算復數(shù)z,根據(jù)復數(shù)的概念和模長公式計算得解.【詳解】復數(shù)z,復數(shù)z是純虛數(shù),解得a1,zi,|z|1,故答案為:1,1【點睛】此題考查復數(shù)的概念和模長計算,根據(jù)復數(shù)是純虛數(shù)建立方程求解,計算模長,關鍵在于熟練掌握復數(shù)的運算法則.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17見解析【解析】已知條件,需要證明的是,要想利用柯西不等式,需要的值,發(fā)現(xiàn),則可以用柯西不等式.【詳解】,.由柯西不等式得,.【點睛】本題考查柯西不等式的應用,屬于基礎題.18(I);

15、(II)最大值為,最小值為.【解析】試題分析:(I)由橢圓的標準方程設,得橢圓的參數(shù)方程為,消去參數(shù)即得直線的普通方程為;(II)關鍵是處理好與角的關系過點作與垂直的直線,垂足為,則在中,故將的最大值與最小值問題轉化為橢圓上的點,到定直線的最大值與最小值問題處理試題解析:(I)曲線C的參數(shù)方程為(為參數(shù))直線的普通方程為(II)曲線C上任意一點到的距離為則其中為銳角,且當時,取到最大值,最大值為當時,取到最小值,最小值為【考點定位】1、橢圓和直線的參數(shù)方程;2、點到直線的距離公式;3、解直角三角形19橫線處任填一個都可以,面積為【解析】無論選哪一個,都先由正弦定理化邊為角后,由誘導公式,展開后

16、,可求得角,再由余弦定理求得,從而易求得三角形面積【詳解】在橫線上填寫“”.解:由正弦定理,得.由,得.由,得.所以.又(若,則這與矛盾),所以.又,得.由余弦定理及,得,即.將代入,解得.所以.在橫線上填寫“”.解:由及正弦定理,得.又,所以有.因為,所以.從而有.又,所以由余弦定理及,得即.將代入,解得.所以.在橫線上填寫“”解:由正弦定理,得.由,得,所以由二倍角公式,得.由,得,所以.所以,即.由余弦定理及,得.即.將代入,解得.所以.【點睛】本題考查三角形面積公式,考查正弦定理、余弦定理,兩角和的正弦公式等,正弦定理進行邊角轉換,求三角形面積時, 若三角形中已知一個角(角的大小或該角

17、的正、余弦值),結合題意求解這個角的兩邊或該角的兩邊之積,代入公式求面積;若已知三角形的三邊,可先求其一個角的余弦值,再求其正弦值,代入公式求面積,總之,結合圖形恰當選擇面積公式是解題的關鍵20(1)點M的極坐標為或(2)【解析】(1)令,由此求得的值,進而求得點的極坐標.(2)設出兩點的極坐標,利用勾股定理求得的表達式,利用三角函數(shù)最值的求法,求得的最大值.【詳解】(1)設點M在極坐標系中的坐標,由,得,或,所以點M的極坐標為或(2)由題意可設,.由,得,.故時,的最大值為.【點睛】本小題主要考查極坐標的求法,考查極坐標下兩點間距離的計算以及距離最值的求法,屬于中檔題.21 ()見解析. (

18、) .【解析】(I)證明平面得出平面,根據(jù)面面垂直的判定定理得到結論;(II)當平面時,棱錐體積最大,建立空間坐標系,計算兩平面的法向量,計算法向量的夾角得出答案【詳解】(I)證明: 分別為的中點 ,又平面平面,又平面平面平面(II),為定值當平面時,三棱錐的體積取最大值以為原點,以為坐標軸建立空間直角坐標系則,設平面的法向量為,則即,令可得平面 是平面的一個法向量平面與平面所成角的正弦值為【點睛】本題考查了面面垂直的判定,二面角的計算,關鍵是能夠根據(jù)體積的最值確定垂直關系,從而可以建立起空間直角坐標系,利用空間向量法求得二面角,屬于中檔題22(1)(2)()見解析()點的坐標為【解析】(1)由題意得,再由的關系求出,即可得橢圓的標準方程;(2)(i)設,的中點為,設直線的方程為,代入橢圓方程中,運用根與系數(shù)的關系和中點坐標公式,結合三點共線的方法:斜率相等,即

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論