付費(fèi)下載
下載本文檔
版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
Lecture
8(第八講)Rotation(Chapter
10)----轉(zhuǎn)動(dòng)ContentsThe
London
Eye(a
giant
Ferris
wheel)1.Motion
of
a
RigidBody(剛體的運(yùn)動(dòng))ties)Translational
motion
andRotationalmotion(平動(dòng)與轉(zhuǎn)動(dòng))Rotational
variables(or
Angular—有關(guān)“轉(zhuǎn)動(dòng)運(yùn)動(dòng)學(xué)”的四個(gè)變量The
rotational
motion
compares
to
thetranslational
motion(平動(dòng)與轉(zhuǎn)動(dòng)的對(duì)比)Kinematics(運(yùn)動(dòng)學(xué)的比較)Dynamics(動(dòng)力學(xué)的比較)Rotation
with
constant
angular
acceleration(勻角加速轉(zhuǎn)動(dòng))Relating
Linear
and
Angular
tiesUniversity
Physics
I1The
London
Eye(a
giant
Ferris
wheel)ContentsKinetic
Energy
of
Rotation(轉(zhuǎn)動(dòng)動(dòng)能)Rotational
Inertial
(Moment
of
Inertial)
&
????(轉(zhuǎn)動(dòng)慣量&轉(zhuǎn)動(dòng)動(dòng)能)Calculating
the
Rotational
Inertial(Moment
of
Inertial)轉(zhuǎn)動(dòng)慣量的計(jì)算Parallel-Axis
Theorem(平行軸定理)5.Newton’s
2nd
Law
for
Rotation
about
a
Fixed
Axis(剛體定軸轉(zhuǎn)動(dòng)的
第二定律,稱剛體定軸轉(zhuǎn)動(dòng)定律)Torque(力矩)Torque
for
body
rotating
about
a
Fixed
AxisNewton’s
2nd
Law
for
RotationWork
for
Rotation??~????
theorem
for
RotationUniversity
Physics
I2Motion
of
Translation
vs.motion
of
Rotation(平動(dòng)與轉(zhuǎn)動(dòng))If
an
object
moveswithoutspinning,
the
motion
ispure
translational.If
an
object
spins
aboutan
axis,
the
motion
ispure
rotational.axisUniversity
Physics
I34Motion
of
a
Rigid
Body(剛體的運(yùn)動(dòng))A
body
is
rigid
if
each
point
of
the
body
has
fixed
relative
distances
with
others.The
sh of
a
rigid
body
is
locked
during
movement.1.Translational
motion(平動(dòng)):For
a
rigid
body
in
puretranslational
motion,everypoint
of
the
body
movesthrough
the
same
lineardistance
in
a
particular
timeinterval.2.Rotational
motion(or
angular
motion,轉(zhuǎn)動(dòng)):In
pure
rotation
about
a
fixed
axis
(called
rotation
axis),every
point
ofthe
body
moves
in
a
circle
whose
centerlies
on
the
axis
of
rotation,
and
every
pointmoves
through
the
same
angle
during
a
particular
timeinterval.University
Physics
I5A
rigid
body(剛體)is
an
large
object,consists
ofmanyparticles,and
is
regarded
as
a
system
ofparticles(質(zhì)點(diǎn)系)In
real
life,
objects
are
large
and
they
behave
like
rigid
bodiesmore
than
like
particles!A
particle(質(zhì)點(diǎn))only
shows
translational(linear)motion.It
does
not
have
rotational
motion(or
angular
motion)A
rigid
body
can
haveboth
translational
motion
and
rotational
motion.
Its
translational
motioncan
be
represented
by
the
motionof
its
COM(center
of
mass)Four
Angular
variables (or
rotational
variables)—4個(gè)有關(guān)“轉(zhuǎn)動(dòng)運(yùn)動(dòng)學(xué)”的變量In
thekinematics
of
rotational
motion(or
angularmotion,轉(zhuǎn)動(dòng)運(yùn)動(dòng)學(xué)),we
also
have
fourequivalent
rotational
variables(or
angular
variables)of
Angular
position,Angulardisplacement,angular
velocity,and
angular
acceleration(角位置,角位移,角速度,角加速度).Fourvariableskinematics
oftranslational
motion(or
linear
motion),1Position
:
??2Displacement:
???3Velocity
:
??4Acceleration
:
??In
thekinematics
of
translationalmotion(or
linear
motion,平動(dòng)運(yùn)動(dòng)學(xué)),we
have
four
majortranslational
variables(or
linear
variables)of
position,displacement,velocity,andacceleration(位置,位移,速度,加速度).-----see
Chapter1-4University
Physics
I7(1).Angular
position
(角度位置??)The
angular
position
θ
of
the
reference
line
is
the
angle
of
the
line
relative
to
afixed
direction
(saying
x
axis),
which
we
take
as
the
zero
angular
position.The
angle
is
positive
if
it
is
counterclockwise(反時(shí)針)with
respect
to
the
positive
x
axis.Units
of
Angular
Position
??The
SI
unit
of
θ
is
radian
(rad), which
is
a
purenumber.??8revolution(圈,轉(zhuǎn))l:
length
of
arc,
??
=
????一圈的弧長(周長??=??????)2??1rad=360°
=57.3°度2??=
1
rev=0.159rev(圈)(2).
Angular
Displacement(???角位移)An
angular
displacement
in
thecounterclockwise
direction
ispositive,and
one
in
the
clockwisedirection
is
negative.University
Physics
I9(3).
Angular
Velocity(??
角速度)The
instantaneousangular
velocity
is
:The
SI
unit
of
??
is
rad/sThe
angular
velocity
??
is
positiveif
the
rotation
is
conterclockwise(4).
Angular
Acceleration(角加速度??)University
Physics
I10Are
Angular
ties
Vectors
?NO!
If
the
rotation
axis
varies.??
+
??
=
??
+
????1
+
??2
≠
??2
+
??1??1??2??1??1
+
??2≠??2
+??1??2University
Physics
I11Right-hand
rule:
We
canuse
the
right-hand
rule
topoint
to
the
directions
ofangular
displacement
???,angular
velocity
??,
andangular
acceleration
??.Are
Angular ties
Vectors
?Yes!
If
the
rotation
axis
is
fixed.12猿人vs人?平動(dòng)vs
轉(zhuǎn)動(dòng)?University
Physics
I13translational(orlinear)motion平動(dòng)rotational
motion(orangularmotion)轉(zhuǎn)動(dòng)????Velocity(線)速度??Acceleration(線)加速度????angularvelocity角速度??angular
acceleration角加速度??tThe
rotational
motion
(or
angular
motion)
compares
to
the
translationalmotion(or
linear
motion),平動(dòng)與轉(zhuǎn)動(dòng)的對(duì)比translational(or
linear)motion平動(dòng)rotational
motion(or
angular
motion)轉(zhuǎn)動(dòng)??
(質(zhì)量)??
(轉(zhuǎn)動(dòng)慣量)??
(加速度)??
(角加速度)??
=
????Linear
momentum(動(dòng)量)??
=
????angular
momentum(角動(dòng)量)??force(力)??Torque(力矩)The
2nd-law:??
=
????The
2nd-law:??
=
????The
2nd-law:??????
=
????(=????)The
2nd-law:??
=
????????(=
????)2.1
Kinematics(運(yùn)動(dòng)學(xué)的比較)
2.
2
Dynamics(動(dòng)力學(xué)的比較)University
Physics
I143.Rotation
with
constant
angular
acceleration(勻角加速轉(zhuǎn)動(dòng))Study
of
rotational
motion
is
easy!It
is
similar
to
linear
motion!
(learned
in
Chapters
2&4,
see
Lecture
2)Translational
motion(along
a
straight
line)with
constant
linear
acceleration)(中學(xué)物理)勻(線)加速直線運(yùn)(平)動(dòng)速度:??=??0
+????2位移:??=??0??+1
????2??2
?
??
2
=
2?? ??
?
??0
0Let
??0
=
0Rotational
motion
(or
angular
motion)
withconstant
angular
acceleration勻角加速轉(zhuǎn)動(dòng)
(大學(xué)物理)??
=
??0
+
????012??
=
??
??
+
????2??2
?
??02
=
2?? ??
?
??0Let
??0
=
015中學(xué)物理勻(線)加速直線運(yùn)(平)動(dòng)大學(xué)物理勻角加速轉(zhuǎn)動(dòng)??
=
??0
+
??????
=
??0
+
??????
?
?? =
??
??
+
1
????
20
0
2??
??? =
??
??
+
1
????
20
0
2??2
?
??
2
=
2?? ??
?
??0
0??2
?
??02
=
2?? ??
?
??0Conclusion:不必頭暈!Study
of
rotational
motion
iseasy!It
is
similarto
the
linear
motion
learned
in
high
school!Chapter
4Chapter
10Derivation:Rotation
with
constant
angular
acceleration
??
(勻角加速轉(zhuǎn)動(dòng))??
=
????????????
=??????0??
?
??????
=????
??????
?
??0
=
????0
012??
?
?? =
?? ??
+
????2??2
?
??02
=
2?? ??
?
??0??
is
constanteliminate
t????
=
????????????????
=????
????
=????
=
??University
Physics
I16Sample
Problem
10-1A
grindstone
rotates
atconstant
angular
acceleration??
=
0.35rad/s2.At
time
??
=
0,
it
has
an
angularvelocity
of
??0
=
?4.6
rad/s
,and
a
reference
line
on
it
ishorizontal,
at
the
angularposition
??0
=
0.??0
=
?4.6
rad/sUniversity
Physics
I17(a)
At
what
time
after
??
=
??
is
the
reference
line
at
theangular
position
??
=
??.
??
rev?Solution:??
=
??.
??
rev=5
×2??
=
10??
radUniversity
Physics
I18(b)
Describe
the
grindstone’s
rotation
between
t
=
0and
t
=
32
s.University
Physics
I19(c)
At
what
time
t
does
the
grindstone
momentarily
stop?Solution:
“momentarily
stop”
means
at
this
moment
“t”??
=
0University
Physics
I20Sample
Problem
10-2While
you
are
operating
a
Rotor
(the
rotatingcylindrical
ride
discussed
in
Sample
Problem6-5
of
chapter
6),
you
spot senger
inacute
distress
and
decrease
the
angularspeed
of
the
cylinder
from
3.40
rad/s
to
2.00rad/s
in
20.0
rev,
at
constant
angularacceleration.General
Physics
I21Solution:(a)
What
is
the
constant
angular
acceleration
duringthis
decrease
in
angular
speed???
=20.0
rev=20
×
2??
=
125.7??????(b)
Howmuch
time
did
the
speed
decrease
take?Solution:University
Physics
I22University
Physics
I233.1
Relating
Linear
and
Angular
tiesThe
position:
the
point
P
moves
the
distanceequaling
to
the
length
of
the
circular
arc
“s”The
speed
alongtangent
??
(切向速率):If
??
varies,
??
moves
in
a
non-uniformcircular
motion.If
??
is
constant,
the
period
of
revolution:??
=
2????University
Physics
I24??????
????
????Tangential
acceleration(切向加速度):??=
????
=
??(????)
=
??
????
=
??????
=
????
+
????Radial
(Centripetal)
acceleration:(徑向加速度,向心加速度)????
???? =
??2
=
(????)2
=
??2??
=
??
??????
= ??2
+
??2??
??Linear
Acceleration
of
a
Point
in
Circular
Motion25LineartyAngulartyL-A
relation??????
=
??????????
=
??????????????
=
??????????2????
=
??
=
??2??Relating
Linear
and
AngulartiesLinearAngular??????????
=??????????
=????????????
=
??????????
=????Once
again(第幾次?):Sample
Problem
5-4Like
ndulum(單擺),a
small
bob
isreleased
from
horizontal
level
(??
=
0°).??
=
0°????????1.
What
are
the
speed
??,
the
acceleration
??
ofthe
ball
when
the
cord
sweeps
an
angle
of
???????????????The
tangential
acceleration(切向加速度):
????
=??
cos
??,2??????
sin
??
=
1????2??
= 2????
sin
??????The
centripetal
acceleration(向心加速度):
??
=
??2
=
2??
sin
??=
??
cos
??)(or
????
=
??????????
= ??2
+
??2
=
?? 1
+
3
sin2
????
??when
??
=
0°, ??
=
??when
??
=
90°, ??
=
2??26??
=
0°????????????2.
What
are
the
angular
speed
ω,
the
angular
acceleration
??
?????????The
tangential
acceleration(切向加速度):????
=??
cos
??,????The
centripetal
acceleration(向心加速度):
??
=
??2
=
2??
sin
????
2??
sin
????
= 2????
sin
??????
=
=??
=
??
=????????
cos
????????
????27(or
??
=→?
)????(or??
=
????
→?
)ω??Sample
Problem
10-3The
figure
showsa
centrifuge(離心機(jī))used
toaccustomastronaut
trainees
tohighaccelerations.The
radius
ofthe
circle
traveledby
anastronaut
is
??=15
m.At
what
constant
angularspeed
must
the
centrifuge
rotate
if
theastronaut
to
have
a
radial
linearacceleration
of
magnitude
????
???
28General
Physics
I29Solution:Because
the
angular
speed
isconstant,
only
the
radiallinear
acceleration
is
present.??
=
????
=
??2??University
Physics
I30Solution:(b)
What
is
the
tangential
acceleration
of
the
astronautif
the
centrifuge
accelerates onstant
rate
fromrest
tothe
angular
speed
of
(a)
in
120
s?Tangential
acceleration
????is
much
smaller
than
the
radial
acceleration
??.0??
=
?? +
??????
=
??
???0??314.Kinetic
Energy(????)of
Rotation(轉(zhuǎn)動(dòng)動(dòng)能)We
treat
a
rotating
rigid
body
(about
a
fixedrotation
axis)
as
a
collection
ofparticles.Each
particle
has
a
mass
????
and rpendicular
distance
????
from
the
rotationaxis.Each
particle
has
the
same
angular
velocity
??.
Each
particle
has
the
differentlinear
speed
????
=
??????.The
total
kinetic
energy
of
the
rigid
body:4.1
Rotational
Inertia(Moment
of
Inertia)&
????(轉(zhuǎn)動(dòng)慣量與轉(zhuǎn)動(dòng)動(dòng)能)Rewrite:Kinetic
energy
dueto
rotation:WhereI
is
called
“Rotational
inertia”
for
a
rigid
body
about
a
particular
axis:SI
unit
of
the
scalar
??:
kg?
m2A
smaller
??
means
easier
to
rotatethe
body????
=
??????University
Physics
I32Sample
Problem
10-4The
figure
showsa
rigid
bodyconsisting
of
two
particles
of
mass??
connected
by
a
rod
of
length
??and
negligible
mass.(a)
What
is
the
rotational
inertia
????????
of
the
body
about
anaxis
through
its
center
of
mass
and
perpendicular
to
the
rod.Solution:comUniversity
Physics
I33Or,
we
can
use
the
parallel-axis
theorem(will
be
learned
later)(b)
What
is
the
rotational
inertia
of
the
body
about
an
axisthrough
the
left
end
of
the
rod
and
parallel
to
the
axis?Solution:University
Physics
I344.2
Calculating
the
Rotational
Inertial(Moment
of
Inertial)Rotational
inertiais
determined
by
the
massdistribution
of
a
body
relative
to
the
rotation
axis.The
mass
of
a
rod
isdistributedmuch
closer
totherotation
axisin
case
(a).
So
the
rotationalinertia
of
the
rod
is
smaller
incase
(a)
and
the
rod
iseasiertorotate
around
that
axis.University
Physics
I35Rotational
inertia
about
a
given
rotation
axis
for
bodies
with
Continuous
massdistribution:??
=
??2????University
Physics
I36All
cases
in
have
rotationaxes
through
the
center
ofmass
(com)
of
the
bodies,so
gave
the
rotationalinertia
of
????????The
rotational
axes
arethrough
the
“com”,
but
may
along
differentdirections,
e.g.
cases
in
(a)and
(h).Sample
problems:
Rotational
inertia
about
a
given
rotation
axis
for
bodies
withContinuous
mass
distribution:
??
=
??2????(i)
Calculate
the
rotational
inertia
????????
in
cases
(a),(b),(c)
and
comparewith
them.In
all
cases,rotation
axes
are
through
the
center
of
mass
(com)
of
the
body,
so
we
have
I
=
????????In
(a):
????????
=In
(c):
????????
=??2????
= ??2????
=
??2
????
=
??2????2??????=
??2?????? ?
????
=??????2????22?????? ?
????
=
2??
??????2??????
=
??????
=
??
2????
?
????
?
??Therefore
????????
= ??2????
=??2??=????3
????
=??=02????2??4412?
=
????2University
Physics
I37????????Sample
problems:
Rotational
inertia
about
a
given
rotation
axis
for
bodies
withContinuous
mass
distribution:
??
=
??2????In
the
two
cases,
the
objects
are
the
same,
but
they
rotate
about
different
rotation
axesthrough
the
center
of
mass
(com)
of
the
body,
and
have
different
rotational
inertia
????????In
(a):
????????
= ??2????
= ??2????
=
??2
????
=
??2??In
(h):
????????
= ??2????,
??
=
??
cos
??????????
=????=0Calculate
the
rotational
inertia
????????
in
cases
(a),(h)
and
compare
with
them.y??
=
??
cos??
????
=
??????????
=
??????
=
??
????????=
2??????=2????2????
= (??
cos
??)2?
2??
????
=????????=
????2??????22????=2??
1
?
cos
2??2??=0????
=????2
12??
22University
Physics
I382??
=
1????2 4.3
Parallel-Axis
Theorem(平行軸定理)
comThe
rotational
inertia
I
of
a
body
varies
as
therotational
axis
changes.??comis
the
rotational
inertia
about
the
axis
through
its
center
of
mass
(com).????
=
????????
+
???2namely,
Parallel-axis
theoremA
body
with
mass
??
has
a
rotational
inertia??com
about
a
axis
through
its
center
of
mass.Given
a
rotation
axis,
which
is
parallel
to
theaxis
through
the
center
of
mass
inaperpendicular
distance
?,
the
rotationalinertia
???of
the
body
about
this
given
axis
is:???University
Physics
I39??comUniversity
Physics
I40Proof
of
Parallel-Axis
TheoremSet
the
origin
at
the
center
of
mass.??=
??com?2
=
??2
+
??2,???
=
??2??????Now
the
rotation
axis
is
through
“??(??,
??)”??= (??2
+
??2
+
??2
+
??2
?
2????
?
2????)????= ??2
+
??2
????
+ ??2
+
??2
????
?
2?? ??????
?
2b??????+?2????com
=??2????
= ??2
+
??2????2
+= ??
??? ??
?
??
2
????????
=
????????
+
???2Then??com
=??????=0,
??com
=??????=0????????
=
??Sample
problems:
Parallel-Axis
Theorem,
Rotational
inertia
about
different
rotation
axes
for
the
same
body.
(i)
Calculate
the
rotational
inertia
????????
in
cases
(a)
and
(b),
and
compare
with
them.(b)In
the
two
cases,
the
objects
are
the
same,
but
they
rotate
about
different
rotationaxes
parallel
to
each
other,
so
they
have
different
rotational
inertia
??In
(a):
????????
= ??2????
= ??2????
=
??2
????
=
??2??In
(b):
??
= ??2????
=
????????
+
???2
=
2????2University
Physics
I415.1
Torque
(
力矩?):5. Newton’s
2nd
Law
for
Rotation
about
a
Fixed
Axis(剛體定軸轉(zhuǎn)動(dòng)的
第二定律,or
called
剛體定軸轉(zhuǎn)動(dòng)定律)Torque
??
on
a
particle
(body),
whichis
rotating
about
a
fixed
point(origin
??),
due
to
a
force
??
appliedon
it
at
a
position
??
is
defined
as:??
=
??
×
??Torque
is
avector ty
withSI
unit
of
N
?
m,the
same
as
work.
But
work
is
a
scalar.Direction
of
torque
follows
right-hand
rule,
??
isperpendicular
to
????????
??Magnitude
of
torque
??
=
????
sin
??.Net
torque
??net
by
several
forces
is
the
sum
ofindividual
torques.力矩=力X力臂University
Physics
I425.2
Torque
for
a
body
rotating
about
a
Fixed
Axis1.
Any
force
acting
on
a
body
rotating
about
afixed
axis
can
be posed
into
twocomponents:
one
is
??,
being
perpendicular
torotation
axis
(i.e.
in
the
plane
perpendicular
to
the
rotation
axis),
and
the
other
component
is
??‖
,being
parallel
to
the
rotation
axis.??‖
is
not
under
our
consideration,
because
it
doesnot
affect
therotation,
butonly
causes
the
rotationaxis
tilting
away.??‖沿任意方向force????????????2.
We
only
need
to
consider
??
(lying
on
the
plane
perpendicularto
the
rotation
axis),
which
affects
the
body
rotating
about
the
axis.??
is
thenposed
into
????
(radial
component
along
??)
and
????(tangential
component
perpendicular
to
??):??
=
????
+
????43??⊥University
Physics
I44??
is
zero
if
extended
line
of
force
passes
through
axis.Direction:
Torque(along
the
same
direction
of
angular
velocity
??)
ispositive
(pointing
up),
if
the
rotation
is
counterclockwise.
It
is
negative
ifdriven
rotation
is
clockwise.總外力矩455.3
Newton’s
2nd
Law
for
RotationParticle
“i”
with
mass
????
is
part
of
a
body,
experiences
a
net
force
????o????
=
????????,??
=
????????????The
rotating
speed
of
each
particle
????
=
???????? ??
??2?? =
(??
??
)??????????=
??
??????
=
??
=????
???? ??
=
??????net,??????
=
????Newton’s
2nd
law
forrotation
about
a
fixed
axis剛體定軸轉(zhuǎn)動(dòng)定律Internal
forces
between
immediate
neighboring
particles
form
Newton’s
3rd
force
pair.Torques
due
to
paired
internal
forces
cancels
each
other.
??net,internal
=
0.Net
torque
takes
only
from
external
applied
forces
on
the
body.??=
??
??????????????質(zhì)量與轉(zhuǎn)動(dòng)慣量的對(duì)比Mass
compares
to
rotational
inertiaM
(質(zhì)量)??平動(dòng)慣量轉(zhuǎn)動(dòng)慣量??
=
??????
=
??????
=
????Linear
momentum(動(dòng)量)??
=
????angular
momentum(角動(dòng)量)質(zhì)量大:讓物體由“靜到轉(zhuǎn)動(dòng)慣量大:讓物體轉(zhuǎn)動(dòng)時(shí)由“靜到動(dòng)”(或“由動(dòng)到靜”)需要的力大!轉(zhuǎn)”(或“由轉(zhuǎn)到靜”)需要的力矩大!質(zhì)量?。鹤屛矬w由“靜到動(dòng)”(或“由動(dòng)到靜”)需要的力小!轉(zhuǎn)動(dòng)慣量?。鹤屛矬w轉(zhuǎn)動(dòng)時(shí)由“靜到轉(zhuǎn)”(或“由轉(zhuǎn)到靜”)需要的力矩??!(
:質(zhì)量與速度有關(guān))轉(zhuǎn)動(dòng)慣量??
=
??????????與轉(zhuǎn)動(dòng)物體的質(zhì)量及所取的轉(zhuǎn)軸有關(guān)46University
Physics
ISample
Problem
10-5Find
the
magnitude
of
the
tensions
????,
????
on
the
two
blocks,
themagnitude
of
the
acceleration
??
of
the
blocks,
in
terms
of
??,
??,
??,
??.??2??1????Revisit
the
sample
problem
5-3
of
chapter
5.(where
the
pulley
is
massless).onBut,
here
now
the
pulley
has
a
radius
??
anda
rotational
inertia
??
about
the
frictionlesshorizontal
axel
due
to
its
mass.Released
from
the
rest,
the
hanging
block
Hfalls
as
the
sliding
block
S
accelerates
to
theright
without
the
taut
massless
cord
slipthe
pulley.??
=?47University
Physics
Ig
13
NMmT
g
3
.
8
m
/
s
2M
mmM
ma
Previously
in
Chapter
5,
the
pulley
is
massless!48University
Physics
I????ponent
of
block
S:T
Maponent
of
block
H:????
?
??
=
????Two
unknown
variables
,T
and
??,can
be
solvedSolution:???? ?
??1
=
????
(2)??2
=
????
(1)Now
look
at
the
pulley:
Force
from
axle
and
the
gravitational
force
pass
throughrotation
axis,
give
zero
torque.????????????????2??1??????????
=
??1??
?
??2??
=
????
(3)Newton’s
2nd
law
for
the
rotation
of the
pulley????For
block
S????2
??????Newton’s
2nd
law
on
two
blocks:For
block
H??1??The
pulley
rotates
clockwise
due
to
the
torque
from
tensions
??1
and
??2
.??2??1
??????
49University
Physics
INonslip
cord:
the
acceleration
of
the
cord,
with
thesame
magnitude
of
blocks’
acceleration,
is
equal
tothe
tangential
acceleration
????
of
the
pulleyrim??
=
????
=
????
(4)Eq.
(1)-(4)
give:??
=????
+??
+??/??2??,??
+??/??2??1
=
??
+
??
+
??/??2
????,????2
=
??
+
??
+
??/??2
????Bigger
??,
smaller
??.??2
=
????
(1)????
?
??1
=
????
(2)??1??
?
??2??
=
????
(3)????????????50University
Physics
I共三個(gè)未知數(shù):??1,??2,??(??=??/??)Discussion:The
same
results
as
the
massless
pulley
case
of
sample
problem
in
chapter
5.??1
=
??
+
??
+
??/??2
????2??
=????
+
??
+??/??2??????
=????
+??
+??/??2????1
=
??2=
????????
+??If
the
pulley
is
massless,????
=
0,
so
that
??
=
0,??
+
??/??2????
+
????
=
??51University
Physics
ISample
Problem
10-6Block
1
of
mass
??1
and
block
2
of
heavier
mass
??2(??2
>
??1)
are
connected
by
a
massless
cordaround
a
pulley
of
radius
??,
which
is
mounted
on
ahorizontal
axle
with
a
rotational
inertia
??
andnegligible
friction.When
released
from
rest,
the
block
2
falls
and
the
block
1rises
without
the
taut
cord
slip on
the
pulley.Considering
at
any
moment
after
releasing
and
beforeany
block
hits
the
pulley,Find
the
magnitude
of
the
tensions
????,
????
on
the
two
blocks,
themagnitude
of
the
acceleration
??
of
the
blocks,
the
magnitude
of
thepulley’s
angular
acceleration??,
in
terms
of
????,
????,
??,
??.52University
Physics
I53Solution:Connected
by
a
taut
cord,
two
blocks
have
the
samemagnitude
of
acceleration
and
the
same
speed.Newton’s
2nd
law
on
two
blocks:??1
?
??1??
=
??1??
(1)??1??1??????2??2??????2??
?
??2
=
??2??
(2)????Newton’s
2nd
law
on
the
pulley:
Force
from
axle
and
the
gravitationalforce
pass
through
rotation
axis,
give
zero
torque.????????????2??1??????????
=
??2??
?
??1??
=
????
(3)??1????2??University
Physics
IThe
pulley
rotates
clockwise
due
to
the
torque
fromtwo
tensions.Nonslip
cord:
the
magnitude
of
acceleration
ofthe
cord
and
the
blocks
is
equal
to
the
magnitudeof
tangential
acceleration
????
of
pulley
rim.??
=
????
=
????
(4)2??2
+
??/??2??1
=
??1
+
??2
+
??/??2
??1??2??1
+
??/??2??2
=
??1
+
??2
+
??/??2
??2????
=??2
?
??1??1
+??2
+
??/??2??,??
=
??2
?
??1
????1
+
??2
+
??/??2
??Bigger
??,smaller
??
and
??.??????????University
Physics
I54??共三個(gè)未知數(shù):??1,??2,??(??=??/??)Eq.
(1)-(4)
give:Discussion:The
same
results
as
the
massless
pulley.If
the
pulley
is
massless,
??
=
0,2??2
+
??/??2??1
=
??1
+
??2
+
??/??2
??1??2??1
+
??/??212??2
=
??+?? +
??/??
2
??2??1?? =
??2=
2??1??2????1
+??2??
=??2
?
??1??1
+
??2
+??/??2????1
+
??2??
=
??2
?
??1
??University
Physics
I55General
Physics
I56Sample
Problem
10-7Find
the
acceleration
of
the
falling
block,
the
angularacceleration
of
the
disk,
and
the
tension
in
the
cord.The
figure
shows
a
uniform
disk,
with
mass
M
=
2.5
kg
andradius
R
=
20
cm,
mounted
on
a
fixed
horizontal
axle.Rotational
inertial
of
the
disk
about
the
axis
is
??
=
1????2.2A
block
withmass
m
=1.2
kg
hangs
from
a
massless
cordthat
is
wrapped
around
the
rim
of
the
disk.Rel
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 塑料包材生產(chǎn)樣品管理制度
- 食品安全生產(chǎn)管理制度
- 生產(chǎn)輔助倉庫管理制度
- 印刷廠生產(chǎn)考制度核制度
- 醫(yī)藥生產(chǎn)車間現(xiàn)場管理制度
- 肉鴿生產(chǎn)管理制度及流程
- 汽車生產(chǎn)全過程管理制度
- 植入類耗材生產(chǎn)管理制度
- 縣經(jīng)信系統(tǒng)安全生產(chǎn)制度
- 生產(chǎn)車間實(shí)習(xí)生考核制度
- 2026年江蘇經(jīng)貿(mào)職業(yè)技術(shù)學(xué)院高職單招職業(yè)適應(yīng)性測(cè)試參考題庫含答案解析
- 2026湖南師大附中雨花學(xué)校春季合同制教師招聘考試備考題庫及答案解析
- 2026年云南省影視協(xié)會(huì)招聘工作人員(2人)筆試參考題庫及答案解析
- 防寒防凍防滑安全培訓(xùn)課件
- 駕校教練員安全知識(shí)培訓(xùn)課件
- 《危險(xiǎn)化學(xué)品安全法》解讀與要點(diǎn)
- 電力網(wǎng)絡(luò)安全培訓(xùn)教學(xué)課件
- 2025年宜昌市“招才興業(yè)”市直事業(yè)單位人才引進(jìn)47人·重慶大學(xué)站筆試歷年典型考題(歷年真題考點(diǎn))解題思路附帶答案詳解
- 上海市徐匯區(qū)上海中學(xué)2025-2026學(xué)年高三上學(xué)期期中考試英語試題(含答案)
- 2025秋滬科版(五四制)(新教材)初中科學(xué)六年級(jí)第一學(xué)期知識(shí)點(diǎn)及期末測(cè)試卷及答案
- 孕婦貧血教學(xué)課件
評(píng)論
0/150
提交評(píng)論