版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
關(guān)于波動(dòng)方程初值問題與行波法第1頁,共41頁,2022年,5月20日,5點(diǎn)46分,星期五行波法——d’Alembert公式
d’Alembert(1717.11.17~1783.10.29)
法國著名的物理學(xué)家、數(shù)學(xué)家和天文學(xué)家,最著名的有8卷巨著《數(shù)學(xué)手冊》、力學(xué)專著《動(dòng)力學(xué)》、23卷的《文集》、《百科全書》的序言等。他的很多研究成果記載于《宇宙體系的幾個(gè)要點(diǎn)研究》中。第2頁,共41頁,2022年,5月20日,5點(diǎn)46分,星期五一維波動(dòng)方程定解問題無界弦自由振動(dòng)*無界弦強(qiáng)迫振動(dòng)半無界弦自由振動(dòng)*半無界弦強(qiáng)迫振動(dòng)三維波動(dòng)方程定解問題二維波動(dòng)方程的定解問題球?qū)ΨQ情形*一般情形球面平均法行波法降維法有限弦振動(dòng)問題第3頁,共41頁,2022年,5月20日,5點(diǎn)46分,星期五§3.1
一維波動(dòng)方程初始位移,初始速度
的無界弦自由振動(dòng)初值問題(Cauchy問題)一.d’Alembert公式推導(dǎo)第4頁,共41頁,2022年,5月20日,5點(diǎn)46分,星期五我們可以求出方程的通解,考慮變量代換利用復(fù)合函數(shù)求導(dǎo)法則得為什么?第5頁,共41頁,2022年,5月20日,5點(diǎn)46分,星期五同理可得:將兩式代入原方程,可得:連續(xù)積分兩次得其中是任意二次連續(xù)可微函數(shù),即有第6頁,共41頁,2022年,5月20日,5點(diǎn)46分,星期五注:
是方程
的通解,它包含兩個(gè)任意函數(shù)。對無限長的自由振動(dòng),利用初始條件,則:第7頁,共41頁,2022年,5月20日,5點(diǎn)46分,星期五兩端對
x
積分,可得:第8頁,共41頁,2022年,5月20日,5點(diǎn)46分,星期五由此即得原定解問題的解:無限長弦自由振動(dòng)的達(dá)朗貝爾(d’Alembert)公式.第9頁,共41頁,2022年,5月20日,5點(diǎn)46分,星期五行波法小結(jié)(注:行波法僅適用于雙曲型方程)3.變量替換:1.波動(dòng)方程:2.特征方程與特征根:4.解方程:5.利用初始條件解F、G:第10頁,共41頁,2022年,5月20日,5點(diǎn)46分,星期五例1:求解無界自由振動(dòng)波動(dòng)方程柯西問題:解:由達(dá)朗貝爾公式:第11頁,共41頁,2022年,5月20日,5點(diǎn)46分,星期五例2:解定解問題:解:
第12頁,共41頁,2022年,5月20日,5點(diǎn)46分,星期五例3:求解波動(dòng)方程柯西問題解:由達(dá)朗貝爾公式:第13頁,共41頁,2022年,5月20日,5點(diǎn)46分,星期五例4:求二階線性偏微分方程初值問題的解解:先確定所給方程的特征曲線。特征方程為:或者
第14頁,共41頁,2022年,5月20日,5點(diǎn)46分,星期五它的兩族積分曲線為做特征變換容易驗(yàn)證,經(jīng)過變換原方程化成它的通解為第15頁,共41頁,2022年,5月20日,5點(diǎn)46分,星期五其中是任意二次連續(xù)可微函數(shù),即有把這個(gè)函數(shù)代入到條件
第16頁,共41頁,2022年,5月20日,5點(diǎn)46分,星期五代入到得原問題的解為:
第17頁,共41頁,2022年,5月20日,5點(diǎn)46分,星期五例5求二階線性偏微分方程的通解
解:特征方程為
積分曲線為:第18頁,共41頁,2022年,5月20日,5點(diǎn)46分,星期五經(jīng)過變換原方程化成所以,令為原問題的通解,其中是任意二次連續(xù)可微函數(shù)。第19頁,共41頁,2022年,5月20日,5點(diǎn)46分,星期五二.d’Alembert公式物理意義1.考慮若的圖形已經(jīng)給定,那么,隨著時(shí)間t
的推移,的圖形以速度a向x軸正方向平行移動(dòng),故稱齊次波動(dòng)方程形如的解為右行波。2,表示一個(gè)以速度a
向x軸負(fù)方向傳播的行波,且傳播過程中,波形也不變化。
稱為左行波。
第20頁,共41頁,2022年,5月20日,5點(diǎn)46分,星期五G(x-at)=G(x0+at-at)=G(x0)F(x+at)=F(x0-at+at)=F(x0)第21頁,共41頁,2022年,5月20日,5點(diǎn)46分,星期五考慮:的物理意義,如圖給出的特例行波速度:弦拉的越緊,波傳播速度越快;密度越小,波傳播越快P9第22頁,共41頁,2022年,5月20日,5點(diǎn)46分,星期五結(jié)論:達(dá)朗貝爾解表示沿x
軸正、反向傳播的兩列波速為a
的波的疊加,故稱為行波法。(2)只有初始速度時(shí):(1)只有初始位移時(shí),代表以速度a沿x軸正向傳播的波代表以速度a沿x軸負(fù)向傳播的波假使初始速度在區(qū)間上是常數(shù),而在此區(qū)間外恒等于0第23頁,共41頁,2022年,5月20日,5點(diǎn)46分,星期五依賴區(qū)間三.依賴區(qū)間、決定區(qū)域和影響區(qū)域區(qū)間為解的依賴區(qū)間。u(x,t)
僅僅依賴于內(nèi)的初始條件,在區(qū)間以外改變初始數(shù)據(jù)時(shí),解的值不變。它是過(x,t)點(diǎn),斜率為的直線與x
軸所截而得到的區(qū)間(如右圖)。1.依賴區(qū)間第24頁,共41頁,2022年,5月20日,5點(diǎn)46分,星期五該區(qū)域中任一點(diǎn)(x,t)的依賴區(qū)間都落在區(qū)間[c,d]內(nèi)部,因此解在此該區(qū)域中的數(shù)值完全由區(qū)間[c,d]上的初始條件決定。該區(qū)域稱為區(qū)間[c
,d]的決定區(qū)域。在區(qū)間[c
,d]上給定初始條件,就可以在其決定區(qū)域中確定初值問題的解。決定區(qū)域2.決定區(qū)域第25頁,共41頁,2022年,5月20日,5點(diǎn)46分,星期五3.影響區(qū)域如果在初始時(shí)刻t=0,擾動(dòng)僅僅在有限區(qū)間上存在,則經(jīng)過時(shí)間t后,擾動(dòng)傳到的范圍為定義:上式所定義的區(qū)域稱為區(qū)間的影響區(qū)域。影響區(qū)域第26頁,共41頁,2022年,5月20日,5點(diǎn)46分,星期五影響區(qū)域決定區(qū)域依賴區(qū)間小結(jié):特征線特征變換第27頁,共41頁,2022年,5月20日,5點(diǎn)46分,星期五分析其物理意義表明,在xot
平面上斜率為的兩族直線:對一維波動(dòng)方程研究起重要作用,稱這兩族直線為一維波動(dòng)方程的特征線。波動(dòng)沿特征線傳播。稱為特征變換,行波法也叫特征線法。自變量變換4.行波法又叫特征線法第28頁,共41頁,2022年,5月20日,5點(diǎn)46分,星期五注:容易看出,一維波動(dòng)方程的兩族特征線恰好是常微分方程的解。
這個(gè)常微分方程稱為波動(dòng)方程的特征方程。
第29頁,共41頁,2022年,5月20日,5點(diǎn)46分,星期五一維非齊次波動(dòng)方程柯西問題的Kirchihoff公式.四.無界弦受迫振動(dòng)問題第30頁,共41頁,2022年,5月20日,5點(diǎn)46分,星期五例:解:第31頁,共41頁,2022年,5月20日,5點(diǎn)46分,星期五我們先考慮情形,即端點(diǎn)固定的振動(dòng)。希望能利用達(dá)朗貝爾公式來求解五.半無界弦的自由振動(dòng)問題第32頁,共41頁,2022年,5月20日,5點(diǎn)46分,星期五為此,我們要作奇延拓(有時(shí)也作偶延拓):第33頁,共41頁,2022年,5月20日,5點(diǎn)46分,星期五
半無界問題的解為:當(dāng)時(shí):當(dāng)時(shí):當(dāng)在
x=0
處有一個(gè)自由端,即:則需要作偶延拓。第34頁,共41頁,2022年,5月20日,5點(diǎn)46分,星期五例當(dāng)當(dāng)?shù)?5頁,共41頁,2022年,5月20日,5點(diǎn)46分,星期五§4.2
三維波動(dòng)方程柯西問題的解
一.三維波動(dòng)方程和球?qū)ΨQ解r第36頁,共41頁,2022年,5月20日,5點(diǎn)46分,星期五球坐標(biāo)中的Laplace運(yùn)算:所謂球?qū)ΨQ是指與無關(guān),則波動(dòng)方程可化簡為球?qū)ΨQ性:第37頁,共41頁,2022年,5月20日,5點(diǎn)46分,星期五得到關(guān)于ru的一維波動(dòng)方程的通解:即此為三維波動(dòng)方程在球?qū)ΨQ情況下的解,其中F、G為任意二次可微函數(shù),可由初始條件確定。第38頁,共41頁,2022年
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 山東省棗莊滕州市2025-2026學(xué)年上學(xué)期期末七年級生物試卷(含答案)
- 化工醫(yī)藥設(shè)備管理培訓(xùn)課件
- 2025-2026學(xué)年河南省南陽市六校聯(lián)考高三(上)期末數(shù)學(xué)試卷(含答案)
- 2026年上海市浦東新區(qū)初三上學(xué)期一模數(shù)學(xué)試卷和參考答案
- 鋼結(jié)構(gòu)項(xiàng)目管理技術(shù)要領(lǐng)
- 特種作業(yè)人員管理制度
- 飛機(jī)的科普教學(xué)課件
- 市政工程公司數(shù)據(jù)管理制度
- 2026年河南投資集團(tuán)招聘部分管理人員10人備考考試題庫及答案解析
- 2026廣西梧州市招聘中小學(xué)(幼兒園)教師260人考試參考題庫及答案解析
- 市政工程養(yǎng)護(hù)管理方案匯編
- 房地產(chǎn)項(xiàng)目供應(yīng)鏈標(biāo)準(zhǔn)化流程管理
- 具身智能+老年人認(rèn)知障礙早期識別方案可行性報(bào)告
- 江蘇省專升本2025年食品科學(xué)與工程食品化學(xué)測試試卷(含答案)
- 急診PDCA課件教學(xué)課件
- (2021-2025)5年高考1年模擬物理真題分類匯編專題04 機(jī)械能守恒、動(dòng)量守恒及功能關(guān)系(廣東專用)(解析版)
- 2025-2030手術(shù)機(jī)器人醫(yī)生培訓(xùn)體系構(gòu)建與醫(yī)院采購決策影響因素報(bào)告
- 乳糜胸護(hù)理新進(jìn)展
- 社區(qū)護(hù)理中的青少年保健
- 手術(shù)室膽囊結(jié)石護(hù)理查房
- QGDW10384-2023輸電線路鋼管塔加工技術(shù)規(guī)程
評論
0/150
提交評論