版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
2022-2023學(xué)年高三上數(shù)學(xué)期末模擬試卷請考生注意:1.請用2B鉛筆將選擇題答案涂填在答題紙相應(yīng)位置上,請用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應(yīng)的答題區(qū)內(nèi)。寫在試題卷、草稿紙上均無效。2.答題前,認真閱讀答題紙上的《注意事項》,按規(guī)定答題。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知,,,則()A. B. C. D.2.若復(fù)數(shù)z滿足,則()A. B. C. D.3.若集合,,則=()A. B. C. D.4.設(shè)全集集合,則()A. B. C. D.5.函數(shù)的圖象大致是()A. B.C. D.6.已知命題:是“直線和直線互相垂直”的充要條件;命題:函數(shù)的最小值為4.給出下列命題:①;②;③;④,其中真命題的個數(shù)為()A.1 B.2 C.3 D.47.已知函數(shù),若時,恒成立,則實數(shù)的值為()A. B. C. D.8.設(shè),是兩條不同的直線,,是兩個不同的平面,下列命題中正確的是()A.若,,,則B.若,,,則C.若,,,則D.若,,,則9.過拋物線的焦點F作兩條互相垂直的弦AB,CD,設(shè)P為拋物線上的一動點,,若,則的最小值是()A.1 B.2 C.3 D.410.已知直線與圓有公共點,則的最大值為()A.4 B. C. D.11.若復(fù)數(shù)滿足,復(fù)數(shù)的共軛復(fù)數(shù)是,則()A.1 B.0 C. D.12.已知的內(nèi)角、、的對邊分別為、、,且,,為邊上的中線,若,則的面積為()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.某校名學(xué)生參加軍事冬令營活動,活動期間各自扮演一名角色進行分組游戲,角色按級別從小到大共種,分別為士兵、排長、連長、營長、團長、旅長、師長、軍長和司令.游戲分組有兩種方式,可以人一組或者人一組.如果人一組,則必須角色相同;如果人一組,則人角色相同或者人為級別連續(xù)的個不同角色.已知這名學(xué)生扮演的角色有名士兵和名司令,其余角色各人,現(xiàn)在新加入名學(xué)生,將這名學(xué)生分成組進行游戲,則新加入的學(xué)生可以扮演的角色的種數(shù)為________.14.已知i為虛數(shù)單位,復(fù)數(shù),則=_______.15.命題“對任意,”的否定是.16.我國古代數(shù)學(xué)名著《九章算術(shù)》對立體幾何有深入的研究,從其中一些數(shù)學(xué)用語可見,譬如“憋臑”意指四個面都是直角三角形的三棱錐.某“憋臑”的三視圖(圖中網(wǎng)格紙上每個小正方形的邊長為1)如圖所示,已知幾何體高為,則該幾何體外接球的表面積為__________.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知等差數(shù)列{an}的各項均為正數(shù),Sn為等差數(shù)列{an}的前n項和,.(1)求數(shù)列{an}的通項an;(2)設(shè)bn=an?3n,求數(shù)列{bn}的前n項和Tn.18.(12分)如圖,在四棱錐中,底面為直角梯形,,,,,,點、分別為,的中點,且平面平面.(1)求證:平面.(2)若,求直線與平面所成角的正弦值.19.(12分)已知f(x)=|x+3|-|x-2|(1)求函數(shù)f(x)的最大值m;(2)正數(shù)a,b,c滿足a+2b+3c=m,求證:20.(12分)在銳角中,,,分別是角,,所對的邊,的面積,且滿足,則的取值范圍是()A. B. C. D.21.(12分)設(shè)函數(shù)().(1)討論函數(shù)的單調(diào)性;(2)若關(guān)于x的方程有唯一的實數(shù)解,求a的取值范圍.22.(10分)在邊長為的正方形,分別為的中點,分別為的中點,現(xiàn)沿折疊,使三點重合,構(gòu)成一個三棱錐.(1)判別與平面的位置關(guān)系,并給出證明;(2)求多面體的體積.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、B【解析】
利用指數(shù)函數(shù)和對數(shù)函數(shù)的單調(diào)性,將數(shù)據(jù)和做對比,即可判斷.【詳解】由于,,故.故選:B.【點睛】本題考查利用指數(shù)函數(shù)和對數(shù)函數(shù)的單調(diào)性比較大小,屬基礎(chǔ)題.2、D【解析】
先化簡得再求得解.【詳解】所以.故選:D【點睛】本題主要考查復(fù)數(shù)的運算和模的計算,意在考查學(xué)生對這些知識的理解掌握水平.3、C【解析】試題分析:化簡集合故選C.考點:集合的運算.4、A【解析】
先求出,再與集合N求交集.【詳解】由已知,,又,所以.故選:A.【點睛】本題考查集合的基本運算,涉及到補集、交集運算,是一道容易題.5、B【解析】
根據(jù)函數(shù)表達式,把分母設(shè)為新函數(shù),首先計算函數(shù)定義域,然后求導(dǎo),根據(jù)導(dǎo)函數(shù)的正負判斷函數(shù)單調(diào)性,對應(yīng)函數(shù)圖像得到答案.【詳解】設(shè),,則的定義域為.,當,,單增,當,,單減,則.則在上單增,上單減,.選B.【點睛】本題考查了函數(shù)圖像的判斷,用到了換元的思想,簡化了運算,同學(xué)們還可以用特殊值法等方法進行判斷.6、A【解析】
先由兩直線垂直的條件判斷出命題p的真假,由基本不等式判斷命題q的真假,從而得出p,q的非命題的真假,繼而判斷復(fù)合命題的真假,可得出選項.【詳解】已知對于命題,由得,所以命題為假命題;關(guān)于命題,函數(shù),當時,,當即時,取等號,當時,函數(shù)沒有最小值,所以命題為假命題.所以和是真命題,所以為假命題,為假命題,為假命題,為真命題,所以真命題的個數(shù)為1個.故選:A.【點睛】本題考查直線的垂直的判定和基本不等式的應(yīng)用,以及復(fù)合命題的真假的判斷,注意運用基本不等式時,滿足所需的條件,屬于基礎(chǔ)題.7、D【解析】
通過分析函數(shù)與的圖象,得到兩函數(shù)必須有相同的零點,解方程組即得解.【詳解】如圖所示,函數(shù)與的圖象,因為時,恒成立,于是兩函數(shù)必須有相同的零點,所以,解得.故選:D【點睛】本題主要考查函數(shù)的圖象的綜合應(yīng)用和函數(shù)的零點問題,考查不等式的恒成立問題,意在考查學(xué)生對這些知識的理解掌握水平.8、D【解析】試題分析:,,故選D.考點:點線面的位置關(guān)系.9、C【解析】
設(shè)直線AB的方程為,代入得:,由根與系數(shù)的關(guān)系得,,從而得到,同理可得,再利用求得的值,當Q,P,M三點共線時,即可得答案.【詳解】根據(jù)題意,可知拋物線的焦點為,則直線AB的斜率存在且不為0,設(shè)直線AB的方程為,代入得:.由根與系數(shù)的關(guān)系得,,所以.又直線CD的方程為,同理,所以,所以.故.過點P作PM垂直于準線,M為垂足,則由拋物線的定義可得.所以,當Q,P,M三點共線時,等號成立.故選:C.【點睛】本題考查直線與拋物線的位置關(guān)系、焦半徑公式的應(yīng)用,考查函數(shù)與方程思想、轉(zhuǎn)化與化歸思想,考查邏輯推理能力和運算求解能力,求解時注意取最值的條件.10、C【解析】
根據(jù)表示圓和直線與圓有公共點,得到,再利用二次函數(shù)的性質(zhì)求解.【詳解】因為表示圓,所以,解得,因為直線與圓有公共點,所以圓心到直線的距離,即,解得,此時,因為,在遞增,所以的最大值.故選:C【點睛】本題主要考查圓的方程,直線與圓的位置關(guān)系以及二次函數(shù)的性質(zhì),還考查了運算求解的能力,屬于中檔題.11、C【解析】
根據(jù)復(fù)數(shù)代數(shù)形式的運算法則求出,再根據(jù)共軛復(fù)數(shù)的概念求解即可.【詳解】解:∵,∴,則,∴,故選:C.【點睛】本題主要考查復(fù)數(shù)代數(shù)形式的運算法則,考查共軛復(fù)數(shù)的概念,屬于基礎(chǔ)題.12、B【解析】
延長到,使,連接,則四邊形為平行四邊形,根據(jù)余弦定理可求出,進而可得的面積.【詳解】解:延長到,使,連接,則四邊形為平行四邊形,則,,,在中,則,得,.故選:B.【點睛】本題考查余弦定理的應(yīng)用,考查三角形面積公式的應(yīng)用,其中根據(jù)中線作出平行四邊形是關(guān)鍵,是中檔題.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】
對新加入的學(xué)生所扮演的角色進行分類討論,分析各種情況下個學(xué)生所扮演的角色的分組,綜合可得出結(jié)論.【詳解】依題意,名學(xué)生分成組,則一定是個人組和個人組.①若新加入的學(xué)生是士兵,則可以將這個人分組如下;名士兵;士兵、排長、連長各名;營長、團長、旅長各名;師長、軍長、司令各名;名司令.所以新加入的學(xué)生可以是士兵,由對稱性可知也可以是司令;②若新加入的學(xué)生是排長,則可以將這個人分組如下:名士兵;連長、營長、團長各名;旅長、師長、軍長各名;名司令;名排長.所以新加入的學(xué)生可以是排長,由對稱性可知也可以是軍長;③若新加入的學(xué)生是連長,則可以將這個人分組如下:名士兵;士兵、排長、連長各名;連長、營長、團長各名;旅長、師長、軍長各名;名司令.所以新加入的學(xué)生可以是連長,由對稱性可知也可以是師長;④若新加入的學(xué)生是營長,則可以將這個人分組如下:名士兵;排長、連長、營長各名;營長、團長、旅長各名;師長、軍長、司令各名;名司令.所以新加入的學(xué)生可以是營長,由對稱性可知也可以是旅長;⑤若新加入的學(xué)生是團長,則可以將這個人分組如下:名士兵;排長、連長、營長各名;旅長、師長、軍長各名;名司令;名團長.所以新加入的學(xué)生可以是團長.綜上所述,新加入學(xué)生可以扮演種角色.故答案為:.【點睛】本題考查分類計數(shù)原理的應(yīng)用,解答的關(guān)鍵就是對新加入的學(xué)生所扮演的角色進行分類討論,屬于中等題.14、【解析】
先把復(fù)數(shù)進行化簡,然后利用求模公式可得結(jié)果.【詳解】.故答案為:.【點睛】本題主要考查復(fù)數(shù)模的求解,利用復(fù)數(shù)的運算把復(fù)數(shù)化為的形式是求解的關(guān)鍵,側(cè)重考查數(shù)學(xué)運算的核心素養(yǎng).15、存在,使得【解析】試題分析:根據(jù)命題否定的概念,可知命題“對任意,”的否定是“存在,使得”.考點:命題的否定.16、【解析】三視圖還原如下圖:,由于每個面是直角,顯然外接球球心O在AC的中點.所以,,填?!军c睛】三視圖還原,當出現(xiàn)三個尖點在一個位置時,我們常用“揪尖法”。外接球球心到各個頂點的距離相等,而直角三角形斜邊上的中點到各頂點的距離相等,所以本題的球心為AC中點。三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1).(2)【解析】
(1)先設(shè)等差數(shù)列{an}的公差為d(d>0),然后根據(jù)等差數(shù)列的通項公式及已知條件可列出關(guān)于d的方程,解出d的值,即可得到數(shù)列{an}的通項an;(2)先根據(jù)第(1)題的結(jié)果計算出數(shù)列{bn}的通項公式,然后運用錯位相減法計算前n項和Tn.【詳解】(1)由題意,設(shè)等差數(shù)列{an}的公差為d(d>0),則a4a5=(1+3d)(1+4d)=11,整理,得12d2+7d﹣10=0,解得d(舍去),或d,∴an=1(n﹣1),n∈N*.(2)由(1)知,bn=an?3n?3n=(2n+1)?3n﹣1,∴Tn=b1+b2+b3+…+bn=3×1+5×31+7×32+…+(2n+1)?3n﹣1,∴3Tn=3×31+5×32+…+(2n﹣1)?3n﹣1+(2n+1)?3n,兩式相減,可得:﹣2Tn=3×1+2×31+2×32+…+2?3n﹣1﹣(2n+1)?3n=3+2×(31+32+…+3n﹣1)﹣(2n+1)?3n=3+2(2n+1)?3n=﹣2n?3n,∴Tn=n?3n.【點睛】本題主要考查等差數(shù)列基本量的計算,以及運用錯位相減法計算前n項和.考查了轉(zhuǎn)化與化歸思想,方程思想,錯位相減法的運用,以及邏輯思維能力和數(shù)學(xué)運算能力.屬于中檔題.18、(1)見解析(2)【解析】
(1)首先可得,再面面垂直的性質(zhì)可得平面,即可得到,再由,即可得到線面垂直;(2)過點做平面的垂線,以為原點,分別以,,為,,軸建立空間直角坐標系,利用空間向量法求出線面角;【詳解】解:(1)∵,點為的中點,∴,又∵平面平面,平面平面,平面,∴平面,又平面,∴,又∵,分別為,的中點,∴,∴,又平面,平面,,∴平面.(2)過點做平面的垂線,以為原點,分別以,,為,,軸建立空間直角坐標系,∵,∴,,,,∴,,,設(shè)平面的法向量為,由,得,令,得,∴,∴直線與平面所成角的正弦值為.【點睛】本題考查線面垂直的判定,面面垂直的性質(zhì)定理的應(yīng)用,利用空間向量法求線面角,屬于中檔題.19、(1)(2)見解析【解析】
(1)利用絕對值三角不等式求得的最大值.(2)由(1)得.方法一,利用柯西不等式證得不等式成立;方法二,利用“的代換”的方法,結(jié)合基本不等式證得不等式成立.【詳解】(1)由絕對值不等式性質(zhì)得當且僅當即時等號成立,所以(2)由(1)得.法1:由柯西不等式得當且僅當時等號成立,即,所以.法2:由得,,當且僅當時“=”成立.【點睛】本小題主要考查絕對值三角不等式,考查利用柯西不等式、基本不等式證明不等式,屬于中檔題.20、A【解析】
由正弦定理化簡得,解得,進而得到,利用正切的倍角公式求得,根據(jù)三角形的面積公式,求得,進而化簡,即可求解.【詳解】由題意,在銳角中,滿足,由正弦定理可得,即,可得,所以,即,所以,所以,則,所以,可得,又由的面積,所以,則.故選:A.【點睛】本題主要考查了正弦定理、余弦定理的應(yīng)用,以及三角形的面積公式和正切的倍角公式的綜合應(yīng)用,著重考查了推理與運算能力,屬于中檔試題.21、(1)當時,遞增區(qū)間時,無遞減區(qū)間,當時,遞增區(qū)間時,遞減區(qū)間時;(2)或.【解析】
(1)求出,對分類討論,先考慮(或)恒成立的范圍,并以此作為的分類標準,若不恒成立,求解,即可得出結(jié)論;(2)有解,即,令,轉(zhuǎn)化求函數(shù)只有一個實數(shù)解,根據(jù)(1)中的結(jié)論,即可求解.【詳解】(1),當時,恒成立,當時,,綜上,當時,遞增區(qū)間時,無遞減區(qū)間,當時,遞增區(qū)間時,遞減區(qū)間時;(2),令,原方程只有一個解,只需只有一個解,即求只有一個零點時,的取值范圍,由(1)得當時,在單調(diào)遞增,且,函數(shù)只有一個零點,原方程只有一個解,當時,由(1)得在出取得極小值,也是最小值,當時,,此時函數(shù)只有一個零點,原方程只有一個解,當且遞增區(qū)間時
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2026年生物科技服務(wù)公司消防管理制度
- 掌握成本核算的一般原理基本要求
- 易遨mse系統(tǒng)培訓(xùn)課件
- 引流培訓(xùn)課件方向及內(nèi)容
- 六項精進培訓(xùn)課件
- 腹瀉培訓(xùn)課件教學(xué)
- 住院患者飲食健康宣教全員培訓(xùn)
- 特異性免疫細胞課件
- 公車駕駛培訓(xùn)
- 公路造價實戰(zhàn)培訓(xùn)課件
- 狼和鴨子兒童故事課件
- 駁回再審裁定書申請抗訴范文
- 2025北京高三二模語文匯編:微寫作
- DB6301∕T 4-2023 住宅物業(yè)星級服務(wù)規(guī)范
- 護理查房與病例討論區(qū)別
- 土建資料管理課件
- 公司安全大講堂活動方案
- GB/T 42186-2022醫(yī)學(xué)檢驗生物樣本冷鏈物流運作規(guī)范
- T/CA 105-2019手機殼套通用規(guī)范
- 重癥胰腺炎的中醫(yī)護理
- 部編版語文六年級上冊第一單元綜合素質(zhì)測評B卷含答案
評論
0/150
提交評論