版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領
文檔簡介
2022-2023學年九上數(shù)學期末模擬試卷注意事項:1.答題前,考生先將自己的姓名、準考證號填寫清楚,將條形碼準確粘貼在考生信息條形碼粘貼區(qū)。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書寫,字體工整、筆跡清楚。3.請按照題號順序在各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試題卷上答題無效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題(每小題3分,共30分)1.如圖,在4×4的網(wǎng)格中,點A,B,C,D,H均在網(wǎng)格的格點上,下面結論:①點H是△ABD的內(nèi)心②點H是△ABD的外心③點H是△BCD的外心④點H是△ADC的外心其中正確的有()A.1個 B.2個 C.3個 D.4個2.如圖,PA,PB是⊙O的切線,A,B為切點,AC是⊙O的直徑,∠BAC=28o,則∠P的度數(shù)是()A.50o B.58oC.56o D.55o3.如圖,△ABC的三個頂點分別為A(1,2)、B(4,2)、C(4,4).若反比例函數(shù)y=在第一象限內(nèi)的圖象與△ABC有交點,則k的取值范圍是()A.1≤k≤4 B.2≤k≤8 C.2≤k≤16 D.8≤k≤164.同學們參加綜合實踐活動時,看到木工師傅用“三弧法”在板材邊角處作直角,其作法是:如圖:(1)作線段AB,分別以點A,B為圓心,AB長為半徑作弧,兩弧交于點C;(2)以點C為圓心,仍以AB長為半徑作弧交AC的延長線于點D;(3)連接BD,BC.根據(jù)以上作圖過程及所作圖形,下列結論中錯誤的是()A.∠ABD=90° B.CA=CB=CD C.sinA= D.cosD=5.如圖,在6×6的正方形網(wǎng)格中,△ABC的頂點都在小正方形的頂點上,則tan∠BAC的值是()A. B. C. D.6.如圖是二次函數(shù)y=ax2+bx+c(a≠0)的圖象的一部分,給出下列命題:①a+b+c=0;②b>2a;③方程ax2+bx+c=0的兩根分別為-3和1;④a-2b+c≥0,其中正確的命題是()A.①②③ B.①④ C.①③ D.①③④7.如圖,AB是⊙O的切線,B為切點,AO與⊙O交于點C,若∠BAO=40°,則∠OCB的度數(shù)為()A.40° B.50° C.65° D.75°8.⊙O的半徑為4,圓心O到直線l的距離為3,則直線l與⊙O的位置關系是()A.相交B.相切C.相離D.無法確定9.如圖,以點A為中心,把△ABC逆時針旋轉(zhuǎn)m°,得到△AB′C′(點B、C的對應點分別為點B′、C′),連接BB′,若AC′∥BB′,則∠CAB′的度數(shù)為()A. B. C. D.10.已知點E在半徑為5的⊙O上運動,AB是⊙O的一條弦且AB=8,則使△ABE的面積為8的點E共有()個.A.1 B.2 C.3 D.4二、填空題(每小題3分,共24分)11.如圖,以點為圓心,半徑為的圓與的圖像交于點,若,則的值為_______.12.在一個不透明的口袋中,裝有一些除顏色外完全相同的紅、白、黑三種顏色的小球.己知袋中有紅球5個,白球23個,且從袋中隨機摸出一個紅球的概率是,則袋中黑球的個數(shù)為__________.13.如圖,,,若,則_________.14.若一個正六邊形的周長為24,則該正六邊形的面積為▲.15.點在線段上,且.設,則__________.16.為了對1000件某品牌襯衣進行抽檢,統(tǒng)計合格襯衣的件數(shù),在相同條件下,經(jīng)過大量的重復抽檢,發(fā)現(xiàn)一件合格襯衣的頻率穩(wěn)定在常數(shù)0.98附近,由此可估計這1000件中不合格的襯衣約為__________件.17.是方程的解,則的值__________.18.如圖,在平面直角坐標系xOy中,P是直線y=2上的一個動點,⊙P的半徑為1,直線OQ切⊙P于點Q,則線段OQ取最小值時,Q點的坐標為_____.三、解答題(共66分)19.(10分)已知反比例函數(shù)的圖象經(jīng)過點A(2,6).(1)求這個反比例函數(shù)的解析式;(2)這個函數(shù)的圖象位于哪些象限?y隨x的增大如何變化?(3)點B(3,4),C(5,2),D(,)是否在這個函數(shù)圖象上?為什么?20.(6分)如圖,已知拋物線C1交直線y=3于點A(﹣4,3),B(﹣1,3),交y軸于點C(0,6).(1)求C1的解析式.(2)求拋物線C1關于直線y=3的對稱拋物線的解析式;設C2交x軸于點D和點E(點D在點E的左邊),求點D和點E的坐標.(3)將拋物線C1水平向右平移得到拋物線C3,記平移后點B的對應點B′,若DB平分∠BDE,求拋物線C3的解析式.(4)直接寫出拋物線C1關于直線y=n(n為常數(shù))對稱的拋物線的解析式.21.(6分)平面直角坐標系中,函數(shù)(x>0),y=x-1,y=x-4的圖象如圖所示,p(a,b)是直線上一動點,且在第一象限.過P作PM∥x軸交直線于M,過P作PN∥y軸交曲線于N.(1)當PM=PN時,求P點坐標(2)當PM>PN時,直接寫出a的取值范圍.22.(8分)已知拋物線的頂點坐標為(1,2),且經(jīng)過點(3,10)求這條拋物線的解析式.23.(8分)如圖,直線與x軸交于點A,與y軸交于點B,拋物線y=-x2+bx+c經(jīng)過A,B兩點.(1)求拋物線的解析式.(2)點P是第一象限拋物線上的一點,連接PA,PB,PO,若△POA的面積是△POB面積的倍.①求點P的坐標;②點Q為拋物線對稱軸上一點,請求出QP+QA的最小值.24.(8分)為實現(xiàn)“先富帶動后富,從而達到共同富?!?,某縣為做好“精準扶貧”,2017年投入資金1000萬元用于教育扶貧,以后投入資金逐年增加,2019年投入資金達到1440萬元.(1)從2017年到2019年,該縣投入用于教育扶貧資金的年平均增長率是多少?(2)假設保持這個年平均增長率不變,請預測一下2020年該縣將投入多少資金用于教育扶貧?25.(10分)2016年3月,我市某中學舉行了“愛我中國?朗誦比賽”活動,根據(jù)學生的成績劃分為A、B、C、D四個等級,并繪制了不完整的兩種統(tǒng)計圖.根據(jù)圖中提供的信息,回答下列問題:(1)參加朗誦比賽的學生共有人,并把條形統(tǒng)計圖補充完整;(2)扇形統(tǒng)計圖中,m=,n=;C等級對應扇形有圓心角為度;(3)學校欲從獲A等級的學生中隨機選取2人,參加市舉辦的朗誦比賽,請利用列表法或樹形圖法,求獲A等級的小明參加市朗誦比賽的概率.26.(10分)某化肥廠2019年生產(chǎn)氮肥4000噸,現(xiàn)準備通過改進技術提升生產(chǎn)效率,計劃到2021年生產(chǎn)氮肥4840噸.現(xiàn)技術攻關小組按要求給出甲、乙兩種技術改進方案,其中運用甲方案能使每年產(chǎn)量增長的百分率相同,運用乙方案能使每年增長的產(chǎn)量相同.問運用哪一種方案能使2020年氮肥的產(chǎn)量更高?高多少?
參考答案一、選擇題(每小題3分,共30分)1、C【分析】先利用勾股定理計算出AB=BC=,AD=,CD=,AC=,再利用勾股定理的逆定理可得到∠ABC=∠ADC=90°,則CB⊥AB,CD⊥AD,根據(jù)角平分線定理的逆定理可判斷點C不在∠BAD的角平分線上,則根據(jù)三角形內(nèi)心的定義可對①進行判斷;由于HA=HB=HC=HD=,則根據(jù)三角形外心的定義可對②③④進行判斷.【詳解】解:∵AB=BC=,AD=,CD=,AC=,∴AB2+BC2=AC2,CD2+AD2=AC2,∴△ABC和△ADC都為直角三角形,∠ABC=∠ADC=90°,∵CB⊥AB,CD⊥AD,而CB≠CD,∴點C不在∠BAD的角平分線上,∴點H不是△ABD的內(nèi)心,所以①錯誤;∵HA=HB=HC=HD=,∴點H是△ABD的外心,點H是△BCD的外心,點H是△ADC的外心,所以②③④正確.故選:C.【點睛】本題考查了三角形的內(nèi)心:三角形的內(nèi)心到三角形三邊的距離相等;三角形的內(nèi)心與三角形頂點的連線平分這個內(nèi)角.也考查了三角形的外心和勾股定理.2、C【分析】利用切線長定理可得切線的性質(zhì)的PA=PB,,則,,再利用互余計算出,然后在根據(jù)三角形內(nèi)角和計算出的度數(shù).【詳解】解:∵PA,PB是⊙O的切線,A,B為切點,∴PA=PB,,∴在△ABP中∴故選:C.【點睛】本題主要考查了切線長定理以及切線的性質(zhì),熟練掌握切線長定理以及切線性質(zhì)是解題的關鍵.3、C【解析】試題解析:由于△ABC是直角三角形,所以當反比例函數(shù)經(jīng)過點A時k最小,進過點C時k最大,據(jù)此可得出結論.∵△ABC是直角三角形,∴當反比例函數(shù)經(jīng)過點A時k最小,經(jīng)過點C時k最大,∴k最小=1×2=2,k最大=4×4=1,∴2≤k≤1.故選C.4、D【分析】由作法得CA=CB=CD=AB,根據(jù)圓周角定理得到∠ABD=90°,點C是△ABD的外心,根據(jù)三角函數(shù)的定義計算出∠D=30°,則∠A=60°,利用特殊角的三角函數(shù)值即可得到結論.【詳解】由作法得CA=CB=CD=AB,故B正確;∴點B在以AD為直徑的圓上,∴∠ABD=90°,故A正確;∴點C是△ABD的外心,在Rt△ABC中,sin∠D==,∴∠D=30°,∠A=60°,∴sinA=,故C正確;cosD=,故D錯誤,故選:D.【點睛】本題考查了解直角三角形,三角形的外接圓與外心:三角形外接圓的圓心是三角形三條邊垂直平分線的交點,叫做三角形的外心.也考查了圓周角定理和解直角三角形.5、C【分析】過點B作BD⊥AC,交AC延長線于點D,利用正切函數(shù)的定義求解可得.【詳解】如圖,過點B作BD⊥AC,交AC延長線于點D,則tan∠BAC==,故選C.【點睛】本題主要考查三角函數(shù)的定義,解題的關鍵是掌握正切函數(shù)的定義:銳角A的對邊a與鄰邊b的比叫做∠A的正切.6、C【分析】根據(jù)二次函數(shù)的圖象可知拋物線開口向上,對稱軸為x=-1,且過點(1,0),根據(jù)對稱軸可得拋物線與x軸的另一個交點為(-3,0),把(1,0)代入可對①做出判斷;由對稱軸為x=-1,可對②做出判斷;根據(jù)二次函數(shù)與一元二次方程的關系,可對③做出判斷;根據(jù)a、c的符號,以及對稱軸可對④做出判斷;最后綜合得出答案.【詳解】解:由圖象可知:拋物線開口向上,對稱軸為直線x=-1,過(1,0)點,
把(1,0)代入y=ax2+bx+c得,a+b+c=0,因此①正確;對稱軸為直線x=-1,即:整理得,b=2a,因此②不正確;由拋物線的對稱性,可知拋物線與x軸的兩個交點為(1,0)(-3,0),因此方程ax2+bx+c=0的兩根分別為-3和1;故③是正確的;
由a>0,b>0,c<0,且b=2a,則a-2b+c=a-4a+c=-3a+c<0,因此④不正確;
故選:C.【點睛】本題考查的是二次函數(shù)圖象與系數(shù)之間的關系,能夠根據(jù)開口判斷a的符號,根據(jù)與x軸,y軸的交點判斷c的值以及b用a表示出的代數(shù)式是解題的關鍵.7、C【詳解】∵AB是⊙O的切線,∴AB⊥OA,即∠OBA=90°.∵∠BAO=40°,∴∠BOA=50°.∵OB=OC,∴∠OCB=.故選C.8、A【解析】∵圓心O到直線l的距離d=3,⊙O的半徑R=4,則d<R,∴直線和圓相交.故選A.9、B【分析】根據(jù)旋轉(zhuǎn)的性質(zhì)可得、,利用等腰三角形的性質(zhì)可求得,再根據(jù)平行線的性質(zhì)得出,最后由角的和差得出結論.【詳解】解:∵以點為中心,把逆時針旋轉(zhuǎn),得到∴,∴∵∴∴故選:B【點睛】本題考查了旋轉(zhuǎn)的性質(zhì):對應點到旋轉(zhuǎn)中心的距離相等;對應點與旋轉(zhuǎn)中心所連線段的夾角等于旋轉(zhuǎn)角;旋轉(zhuǎn)前、后的圖形全等;也考查了等腰三角形的性質(zhì),三角形的內(nèi)角和定理,平行線的性質(zhì)及角的和差.10、C【分析】根據(jù)△ABC的面積可將高求出,即⊙O上的點到AB的距離為高長的點都符合題意.【詳解】過圓心向弦AB作垂線,再連接半徑.設△ABE的高為h,由可求.由圓的對稱性可知,有兩個點符合要求;又弦心距=.∵3+2=5,故將弦心距AB延長與⊙O相交,交點也符合要求,故符合要求的點有3個.故選C.考點:(1)垂徑定理;(2)勾股定理.二、填空題(每小題3分,共24分)11、【分析】過點B作BM⊥x軸,過點A作AN⊥y軸,先證△BOM≌△AON,由此可求出∠BOM的度數(shù),再設B(a,b),根據(jù)銳角三角函數(shù)的定義即可求出a、b的值,即可求出答案.【詳解】解:如圖,過點B作BM⊥x軸,過點A作AN⊥y軸,∵點B、A均在反比例函數(shù)的圖象上,OA=OB,
∴點B和點A關于y=x對稱,
∴AN=BM,ON=OM,
∴△BOM≌△AON,
∴∠BOM=∠AON=∵∴∠BOM==30°,
設B(a,b),則OM=a=OB?cos30°=2×=,BM=b=OB×sin30°=2×=1,
∴k=ab=×1=故答案為.【點睛】本題考查的是反比例函數(shù)綜合題反比例函數(shù)圖象上點的坐標特征,根據(jù)題意作出輔助線構造出直角三角形,根據(jù)直角三角函數(shù)求得B的坐標是解題的關鍵.12、1【分析】袋中黑球的個數(shù)為,利用概率公式得到,然后利用比例性質(zhì)求出即可.【詳解】解:設袋中黑球的個數(shù)為,根據(jù)題意得,解得,即袋中黑球的個數(shù)為個.故答案為:1.【點睛】本題主要考查概率的計算問題,關鍵在于根據(jù)題意對概率公式的應用.13、1【分析】可得出△OAB∽△OCD,可求出CD的長.【詳解】解:∵AB∥CD,
∴△OAB∽△OCD,
∴,
∵,若AB=8,
∴CD=1.
故答案為:1.【點睛】此題考查相似三角形的判定與性質(zhì),解題的關鍵是熟練掌握基本知識.14、【解析】根據(jù)題意畫出圖形,如圖,連接OB,OC,過O作OM⊥BC于M,∴∠BOC=×360°=60°.∵OB=OC,∴△OBC是等邊三角形.∴∠OBC=60°.∵正六邊形ABCDEF的周長為21,∴BC=21÷6=1.∴OB=BC=1,∴BM=OB·sin∠OBC=1·.∴.15、【分析】根據(jù)題意,將問題轉(zhuǎn)化為解一元二次方程的求解問題即可得出答案.【詳解】解:設BP=x,則AP=4-x,根據(jù)題意可得,,整理為:,利用求根公式解方程得:,∴,(舍去).故答案為:.【點睛】本題考查的知識點是由實際問題抽化出來的一元二次方程問題,將問題轉(zhuǎn)化為一元二次方程求解問題,熟記一元二次方程的求根公式是解此題的關鍵.16、1【分析】用總件數(shù)乘以不合格襯衣的頻率即可得出答案.【詳解】這1000件中不合格的襯衣約為:(件);
故答案為:1.【點睛】本題考查了利用頻率估計概率:大量重復實驗時,事件發(fā)生的頻率在某個固定位置左右擺動,并且擺動的幅度越來越小,根據(jù)這個頻率穩(wěn)定性定理,可以用頻率的集中趨勢來估計概率,這個固定的近似值就是這個事件的概率.17、【分析】先根據(jù)是方程的解求出的值,再進行計算即可得到答案.【詳解】解:∵是方程的解,∴,∴,∴,∴,故答案為:.【點睛】本題主要考查了一元二次方程的解,解題時,逆用一元二次方程的定義易得出所求式子的值,在解題時要重視解題思路的逆向分析.18、(,).【分析】連接PQ、OP,如圖,根據(jù)切線的性質(zhì)得PQ⊥OQ,再利用勾股定理得到OQ=,利用垂線段最短,當OP最小時,OQ最小,然后求出OP的最小值,得到OQ的最小值,于是得到結論.【詳解】連接PQ、OP,如圖,∵直線OQ切⊙P于點Q,∴PQ⊥OQ,在Rt△OPQ中,OQ==,當OP最小時,OQ最小,當OP⊥直線y=2時,OP有最小值2,∴OQ的最小值為=.設點Q的橫坐標為a,∴S△OPQ=×=×2×|a,∴a=,∴Q點的縱坐標==,∴Q點的坐標為(,),故答案為(,).【點睛】本題考查了切線的性質(zhì):圓的切線垂直于經(jīng)過切點的半徑.也考查了勾股定理.三、解答題(共66分)19、(1);(2)這個函數(shù)的圖象位于第一、三象限,在每一個象限內(nèi),y隨x的增大而減?。?3)點B,D在函數(shù)的圖象上,點C不在這個函數(shù)圖象上.【分析】(1)利用待定系數(shù)法求函數(shù)解析式;(2)根據(jù)反比例函數(shù)的性質(zhì)求解;(3)根據(jù)反比例函數(shù)圖象上點的坐標特征進行判斷.【詳解】(1)設這個反比例函數(shù)的解析式為,因為在其圖象上,所以點的坐標滿足,即,,解得,所以,這個反比例函數(shù)解析式為;(2)這個函數(shù)的圖象位于第一、三象限,在每一個象限內(nèi),隨的增大而減??;(3)因為點,滿足,所以點,在函數(shù)的圖象上,點的坐標不滿足,所以點不在這個函數(shù)圖象上.【點睛】本題考查了待定系數(shù)法求反比例函數(shù)的解析式:先設出含有待定系數(shù)的反比例函數(shù)解析式y(tǒng)=(k為常數(shù),k≠0);再把已知條件(自變量與函數(shù)的對應值)帶入解析式,得到待定系數(shù)的方程;然后解方程,求出待定系數(shù);最后寫出解析式.也考查了反比例函數(shù)的性質(zhì).20、(1)C1的解析式為y=x2+x+1;(2)拋物線C2的解析式為y=﹣x2﹣x,D(﹣5,0),E(0,0);(3)拋物線C3的解析式為y=;(4)y=x2x+2n﹣1.【分析】(1)設拋物線C1經(jīng)的解析式為y=ax2+bx+c,將點A、B、C的坐標代入求解即可得到解析式;(2)先求出點C關于直線y=3的對稱點的坐標為(0,0),設拋物線C2的解析式為y=a1x2+b1x+c1,即可求出答案;(3)如圖,根據(jù)平行線的性質(zhì)及角平分線的性質(zhì)得到BB′=DB,利用勾股定理求出DB的長度即可得到拋物線平移的距離,由此得到平移后的解析式;(4)設拋物線C1關于直線y=n(n為常數(shù))對稱的拋物線的解析式為y=mx+nx+k,根據(jù)對稱性得到m、n的值,再利用對稱性得到新函數(shù)與y軸交點坐標得到k的值,由此得到函數(shù)解析式.【詳解】(1)設拋物線C1經(jīng)的解析式為y=ax2+bx+c,∵拋物線C1經(jīng)過點A(﹣4,3),B(﹣1,3),C(0,1).∴,解得,∴C1的解析式為y=x2+x+1;(2)∵C點關于直線y=3的對稱點為(0,0),設拋物線C2的解析式為y=a1x2+b1x+c1,∴,解得,∴拋物線C2的解析式為y=﹣x2﹣x;令y=0,則﹣x2﹣x=0,解得x1=0,x2=﹣5,∴D(﹣5,0),E(0,0);(3)如圖,∵DB′平分∠BDE,∴∠BDB′=∠ODB′,∵AB∥x軸,∴∠BB′D=∠ODB′,∴∠BDB′=∠BB′D,∴BB′=DB,∵BD==5,∴將拋物線C1水平向右平移5個單位得到拋物線C3,∵C1的解析式為y=x2+x+1=(x+)2+,∴拋物線C3的解析式為y=(x+﹣5)2+=;(4)設拋物線C1關于直線y=n(n為常數(shù))對稱的拋物線的解析式為y=mx+nx+k,根據(jù)對稱性得:新拋物線的開口方向與原拋物線的開口方向相反,開口大小相同,故m=-,對稱軸沒有變化,故n=-,當n>1時,n+(n-1)=2n-1,故新拋物線與y軸的交點為(0,2n-1),當n<1時,n-(1-n)=2n-1,新拋物線與y軸的交點為(0,2n-1),∴k=2n-1,∴拋物線C1關于直線y=n(n為常數(shù))對稱的拋物線的解析式為:y=﹣x2﹣x+2n﹣1.【點睛】此題考查待定系數(shù)法求拋物線的解析式,拋物線的對稱性,拋物線平移的性質(zhì),解題中確定變化后的拋物線的特殊點的坐標是解題的關鍵.21、(1)(2,1)或(,);(2)【分析】(1)根據(jù)直線與直線的特征,可以判斷為平行四邊形,且,再根據(jù)坐標特征得到等式=3,即可求解;(2)根據(jù)第(1)小題的結果結合圖象即可得到答案.【詳解】(1)∵直線與軸交點,直線與軸交點,∴,∵直線與直線平行,且∥軸,∴為平行四邊形,∴,∵∥軸,在的圖象上,∴,∵在直線上,∴,∵,∴=3,解得:或,(2)如圖,∵或,,當點在直線和區(qū)間運動時,,∴【點睛】本題考查了一次函數(shù)與反比例函數(shù)的交點問題,利用函數(shù)圖象性質(zhì)解決問題是本題的關鍵.22、y=1(x﹣1)1+1.【分析】根據(jù)題意設拋物線解析式為y=a(x﹣1)1+1,代入(3,10)求解即可.【詳解】解:根據(jù)題意設拋物線解析式為y=a(x﹣1)1+1,把(3,10)代入得a(3﹣1)1+1=10,解得a=1,所以拋物線解析式為y=1(x﹣1)1+1.【點睛】本題考查了拋物線的問題,掌握拋物線的性質(zhì)以及解析法、待定系數(shù)法是解題的關鍵.23、(1);(2)①點P的坐標為(,1);②【分析】(1)先確定出點A,B坐標,再用待定系數(shù)法求出拋物線解析式;
(2)設出點P的坐標,①用△POA的面積是△POB面積的倍,建立方程求解即可;②利用對稱性找到最小線段,用兩點間距離公式求解即可.【詳解】解:(1)在中,令x=0,得y=1;令y=0,得x=2,∴A(2,0),,B(0,1).∵拋物線經(jīng)過A、B兩點,∴解得∴拋物線的解析式為.(2)①設點P的坐標為(,),過點P分別作x軸、y軸的垂線,垂足分別為D、E.∴∵∴∴,∵點P在第一象限,所以∴點P的坐標為(,1)②設拋物線與x軸的另一交點為C,則點C的坐標為(,)連接PC交對稱軸一點,即Q點,則PC的長就是QP+QA的最小值,所以QP+QA的最小值
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 學校硅pu球場專項施工方案
- 基坑施工專項施工方案
- 廠房預制梁吊裝施工方案
- 升壓站建筑工程混凝土基礎專項施工方案
- 鑿除橋梁護欄混凝土施工技術方案
- 2024年英山縣招教考試備考題庫帶答案解析(奪冠)
- 2026年萬博科技職業(yè)學院單招職業(yè)適應性考試題庫帶答案解析
- 2026年職場溝通與禮儀培訓考核題庫
- 2025年容城縣招教考試備考題庫含答案解析(奪冠)
- 2025年西吉縣招教考試備考題庫及答案解析(必刷)
- 神經(jīng)刺激治療患者知情同意書模板
- 軟件系統(tǒng)上線測試與驗收報告
- 冬季交通安全測試題及答案解析
- 2025年國家能源局系統(tǒng)公務員面試模擬題及備考指南
- (2025年標準)圈內(nèi)認主協(xié)議書
- 2025年安徽省中考化學真題及答案
- 2025年軍隊文職人員統(tǒng)一招聘面試( 臨床醫(yī)學)題庫附答案
- 海馬體核磁掃描課件
- 某電力股份企業(yè)同熱三期2×100萬千瓦項目環(huán)評報告書
- 2026屆上海市部分區(qū)中考一模語文試題含解析
- 中科大人類生態(tài)學課件2.0 地球·環(huán)境與人
評論
0/150
提交評論