版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
?直接開平方法解一元二次方程?講課文稿?直接開平方法解一元二次方程?講課文稿?直接開平方法解一元二次方程?講課文稿?直接開平方法解一元二次方程?講課稿開課地址:長樂一中分校開課老師:福清江陰中學嚴松發(fā)開課時間:2021年5月24日周二上午第四節(jié)今日我講課的課題是?直接開平方法解一元二次方程?。內(nèi)容選自人教版教科書,數(shù)學九年級上冊第21章21.2解一元一次方程第1節(jié)。下邊我從教材分析、講課目的確實定,講課重、難點的分析,教法、學法,講課過程幾個方面對本節(jié)課的講課進行一個說明。一、教材分析:一元二次方程的解法是本章的要點內(nèi)容,直接開平方法一元二次方程解法的初步課,直接開平方法是解一元二次方程的基礎(chǔ)方法。它的推導(dǎo)成立在平方根意義和開方運算的基礎(chǔ)上,第一它是配方法的基礎(chǔ),其次再求二次函數(shù)與X軸交點等問題中都必然用一元二次方程的解法。同時,這一屆教材的編寫中突出表達了化歸、類比等重要的數(shù)學思想方法。所以這一屆不只是為后續(xù)學習打下牢固基礎(chǔ)的一節(jié)課,更是讓學生體驗并逐漸掌握有關(guān)數(shù)學思想方法的一節(jié)課。為此,依據(jù)課標要乞降學生實質(zhì)狀況,制定了以下的講課目的:二、講課目的:1.知識與技術(shù)2=p或〔x+n〕2=p〔p≥0〕的一元二次方程.
〔1〕會用開平方法解形如x〔2〕能依據(jù)詳細問題的實質(zhì)意義查驗結(jié)果能否合理,并對其進行棄?。?.過程與方法經(jīng)過實例,使學生領(lǐng)悟一元二次方程應(yīng)用價值并意識到解一元二次方程的重要性,理解直接開平方法的數(shù)學依據(jù),并能應(yīng)用直接開平方法.讓學生經(jīng)歷由簡到繁過程,體驗類比、化歸、降次的數(shù)學思想方法,培育學生察看、分析、計算等思想能力及應(yīng)企圖識.3.感神情度與價值觀經(jīng)過學生對詳細問題的思慮、討論、溝通,最后得出結(jié)論的過程,培育學生的進步精神,讓學生養(yǎng)成科學謹慎的治學態(tài)度和應(yīng)用所學知識解決問題的習慣.三、講課要點與講課難點的分析22本節(jié)課是一元二次方程解法初步課,講課要點是用直接開平方法解形如x=p或〔x+n〕=p〔p≥0〕的一元二次方程。難點是不可以直接降次解方程化為可直接降次解方程的“化歸〞的轉(zhuǎn)變方法與技巧.四、教法學法分析:1、教法:本節(jié)課采納啟迪式和自主研究式與溝通討論相聯(lián)合的講課方式。在講課中以啟發(fā)學生進行研究的形式張開,利用已有的知識,利用學生已有的知識,讓學生多溝通,主動參加到講課活動中來,讓學生處于主導(dǎo)地位。經(jīng)過比較合理的問題設(shè)計、小組討論形式讓學生更好的掌握知識。所以本課主要采納的是啟迪、研究式講課方法。2、學法:經(jīng)過本節(jié)課的講課,讓學生學會擅長察看、分析討論、和類比歸納的方法。靈活地運用舊知識去研究新問題,在耳擩目染中領(lǐng)悟?qū)W習方法。使學生從“學會〞到“會學〞最后到“樂學〞。五、講課過程分析:依據(jù)本節(jié)課的講課目的我將講課過程設(shè)計一下七個講課環(huán)節(jié):活動一,復(fù)習發(fā)問〔有關(guān)知識鏈接〕2aa1、假如x(0),那么x叫做a的平方根2aa2、假如x(0),那么x=a23、假如x25,那么x=5活動二,創(chuàng)辦情境,導(dǎo)入新知;12問題1一桶油漆可刷的面積為1500dm,李林用這桶油漆恰巧刷完10個相同的正方體形狀的盒子的所有表面面,你能算出盒子的棱長嗎?2設(shè)此中一個盒子的棱長為xdm,那么這個盒子的表面積為6x2dm,依據(jù)一桶油漆可刷的面積,2=1500列出方程10×6x2=25①
整理,得x問題2那么如何解這個方程①x2=25,你能用你學過的知識來解答它嗎?說出你的想法師生活動:學生經(jīng)過閱讀理解題意,教師啟迪學生設(shè)未知數(shù)、列出方程,并解決問題。設(shè)計企圖:經(jīng)過生活中的實詰問題指引學生列出一元二次方程,讓學生領(lǐng)悟數(shù)學根源于生活,并依據(jù)前面學過的平方根意義試著解方程,特別是問題3的練習,深入學生對直接開平方使用范圍的理解,同時為學生學習方程的配方法做充分的準備。1、溝通與歸納關(guān)于方程①,能夠這樣想:2=25∵χ依據(jù)平方根的定義可知:χ是25的( ).∴χ=5這時,我們常用χ1、χ2來表示未知數(shù)為χ的一元二次方程的兩個根?!喾匠苔?=25的兩個根為χ1=5,χ2=-5.依據(jù)是平方根的意義能夠考證,5和-5是方程①的兩根,可是棱長不可以夠是負值,所以盒子的棱長為5dm.2、實行請解以下方程:x2=3,2x2-8=0,x2=0,x2=-2?這些方程有什么共同的特點?構(gòu)造特點:方程可化成x2=p的形式,→一元二次方程〔當p≥0時〕xp或xp→兩個一元一次方程3、歸納:(師生活動)一般地,關(guān)于方程x2=p,如何求其根?〔學生先獨立思慮后小組討論〕〔1〕當P>0時,方程有兩個不等的實數(shù)根〔2〕當P=0時,方程有兩個相等的實數(shù)根〔3〕當P<0時,方程沒有實數(shù)根2設(shè)計企圖:讓學生經(jīng)過練習歸納出解一元二次方程x=p的方法,讓學生領(lǐng)悟分類討論的思想方法?;顒尤汉献鳒贤?1、見解:一般地,關(guān)于形如x=p(p≥0)的方程,依據(jù)平方根的定義,可解得這類解一元二次方程的方法叫做直接開平方法.2=p,假如p≥0,那么就能夠用直接開平方法求它的根。
關(guān)于一元二次方程x當p>0時,方程有兩個不相等的根;當p=0時,方程有兩個相等的根。2、研究2=25?比較上邊解方程的過程,你以為應(yīng)如何解方程〔x+3〕活動四,初步應(yīng)用,感悟新知;2=16?例:如何解方程(x+1)分析:兩邊開方,即可得出兩個一元一次方程,求出方程的解即可.解:直接開平方,得x+1=±4可得X+1=-4或x+1=42所以,原方程的根是χ1=-5,χ2=3師生活動:這個題可讓學生試著解決,教師試著討論上邊的解法,由方程到方程,實質(zhì)上是把一元一次方程“降次〞,轉(zhuǎn)變?yōu)閮蓚€一元一次方程,這樣就把方程轉(zhuǎn)變?yōu)槲覀儠獾梅匠?。設(shè)計企圖:本環(huán)節(jié)的設(shè)置是為了讓學生領(lǐng)悟整體思想,將一元二次方程問題轉(zhuǎn)變?yōu)橐辉淮畏匠虂斫鉀Q。上邊這類解法中,實質(zhì)上是把一個一元二次方程“降次〞,轉(zhuǎn)變?yōu)閮蓚€一元一次方程。總結(jié):運用直接開平方法解一元二次方程,第一要將一元二次方程的左側(cè)化為含有未知數(shù)的完滿平方式,右側(cè)化為非負數(shù)的形式,此后直接用開平方的方法求解.活動五,講堂練習,牢固新知;〔一〕牛刀小試(1)方程x2=0.25的根是;(2)方程2x2=18的根是;(3)方程3x2-12=0的根是.〔二〕、實踐與應(yīng)用1、利用直接開平方法解以下方程:(1).〔x-2)2=04(2).〔x+6)2-9=02、利用直接開平方法解以下方程:〔1〕3〔χ-1〕2-6=0〔2)x2-4x+4=5設(shè)計企圖:經(jīng)過題組指引學生研究、發(fā)現(xiàn)一元二次方程的解法,培育學生疏類討論的思想,并進一步提高解決問題的能力,并且逐漸增添難度,變換不一樣樣種類的題目,進一步牢固所學知識,領(lǐng)悟數(shù)學根源于生活,并效力于生活?;顒恿?,領(lǐng)悟與分享;1.一般地,關(guān)于形如x2=P(P≥0)的方程,依據(jù)平方根的定義,可解得2、解一元二次方程的要點問題是:如何降次—把一元二次方程化成兩個一元一次方程你今日學了什么方法能做到這一點?3、本節(jié)課學了哪些思想方法:活動七;部署作業(yè),課后牢固:1、必做題:P16習題第1題2、選做題:P17習題第2題設(shè)計企圖:實時作業(yè)是牢固講堂學習知識的重要環(huán)節(jié),練習題主要訓(xùn)練一元二次方程的解法,選做題是讓學生為后邊學習配方法做準備〕〔一〕復(fù)習發(fā)問,回想舊知:經(jīng)過設(shè)置問題,平方根的見解和開平方運算。進而為直接開平方法解一元二次方程做好鋪墊?!捕硠?chuàng)辦情境,導(dǎo)入新知:第一以實詰問題引入:一桶某種油漆可刷的面積為1500dm2,李林用這桶油漆恰巧刷完10個相同的正方表達狀的盒子的所有表面面,你能算出盒子的棱長嗎?這個問題中的數(shù)目關(guān)系比較簡單,學生很簡單列出相應(yīng)的方程:設(shè)正方體的棱長為xdm,那么一個2dm2,依據(jù)一桶油漆可刷的面積,列出方程10×6x2=1500由此可得x2=25
正方體的表面積為6x指引學生初步思慮、回想已有的知識,依據(jù)平方根的意義求方程的解,主動參加到本節(jié)課的研究中來。x1=5,x2=-5能夠考證,5和-5是方程①的兩根,可是棱長不可以夠是負值,所以正方體的棱長為5dm.〔三〕合作溝通,深入辨析本節(jié)課力爭在學生已有經(jīng)驗和知識基礎(chǔ)之,讓學生經(jīng)過察看、類比、聯(lián)想、轉(zhuǎn)變自主發(fā)現(xiàn)解決問題的方法,理解和掌握直接開平方法。所以在這一環(huán)節(jié),第一提出問題〔2〕:你以為應(yīng)解方程〔x+3〕2=25?踴躍指引學生察看方程〔1〕與方程x2=25的差別和聯(lián)系,踴躍啟迪指引,并聯(lián)合學生共同達成方程〔1〕的解題過程,標準板書,指引學生不只要回解方程同時要注意解題格式。在此基礎(chǔ)上,教師指引學生小組溝通,經(jīng)過察看方程的構(gòu)造與完3全平方式的聯(lián)系,類比方程〔1〕的解法,經(jīng)過找到問題的打破口,進而發(fā)現(xiàn)此方程的左側(cè)是為完滿平方。這一過程學生經(jīng)過察看、比較、思慮、溝通等活動,加強了將“未知轉(zhuǎn)變?yōu)楱暤臄?shù)學思想方法。對直接開平方法有了更深的理解,打破了本課的難點?!菜摹忱}分析,牢固深入:這一環(huán)節(jié)的設(shè)計在熟習用直接開平方法解一元二次方程后,經(jīng)過詳細的練習結(jié)果,在察看,歸納、比較中,讓學生進一步領(lǐng)悟把不可以夠直接降次解的方程轉(zhuǎn)變?yōu)槟苤苯咏荡谓獾姆匠痰囊罁?jù)、方法和技術(shù)。使難點進一步得以打破。同時,經(jīng)過練習,指引學2=p或〔x+n〕2=p中p的范圍〔p≥0〕,使學生深刻理解直接開平方發(fā)的理論
生進一步歸納總結(jié)x依據(jù)在訓(xùn)練內(nèi)容的選擇上考慮到學生接受新舊知識聯(lián)合的能力:一是以方法為主,層層遞進的方式,二是以根本技術(shù)為主,在精心設(shè)計的練習過程中抓住學生問題的癥結(jié),培育學生獨立分析、理解能力和思慮解決問題的能力,提高解題技巧?!参濉持v堂操練本環(huán)節(jié)經(jīng)過設(shè)計分層練習題,講練聯(lián)合,使學生正確運用直接開平方法解一元二次方程,同時從學生訓(xùn)練中發(fā)現(xiàn)問題,實時討論,讓學生有足夠思慮的空間和展現(xiàn)的平臺,讓基礎(chǔ)不一樣樣的學生在活動中都有成就感?!擦晨偨Y(jié)歸納,提高認識本節(jié)課你學會了哪些知識?采納學生小結(jié)教師增補的方式來歸納本節(jié)課的知識?;貜?fù)學生在學完本課后發(fā)現(xiàn)的未能解決的問題及創(chuàng)新性問題,給學生自由思考的空間。1、知識歸納:教師指引學生對用直接開平方解一元二次方程的形式進行語言上形式的歸納和總結(jié).2、總結(jié)提高:直接開平方法的理論依據(jù),直接開平方法的目的。教師總結(jié),使學生領(lǐng)悟本節(jié)課經(jīng)過直接開平方法抵達降次解一元二次方程的目的。3、要學會經(jīng)過察看、比較分析去發(fā)現(xiàn)新舊知識的聯(lián)系,以舊引新,學會化未知為的轉(zhuǎn)化思想方法,加強學生的創(chuàng)新意識。〔七〕部署作業(yè),課后牢固:依據(jù)學生計在個體差別和激發(fā)學生數(shù)學學習興趣的原那么,分別部署基礎(chǔ)訓(xùn)練和課后思慮兩類作業(yè)。分層部署作業(yè)及牢固本節(jié)主要內(nèi)容,有讓學有余力的學生有思慮和提高的空間。六、講課反省1.聯(lián)系實質(zhì),重視知識的形成過程本節(jié)課經(jīng)過學生熟習的生活背景資料,讓學生列方程,此后讓學生溝通討論,真實關(guān)注實質(zhì)背景與形成過程,進而歸納得出新知,表達了以學生張開為本的原那么.2.真實使學生成為學習的主人不論是在新知的給出,仍是知識點的落實,本節(jié)課都采納了啟迪溝通的形式,留給學生思慮的空間,最后指引學生自己歸納、歸納.使知識落到實處.真實讓學生主動思想,培育學生的數(shù)學修養(yǎng).整個講課中注意表達以教師為主導(dǎo),學生為主體,探究為主線.使數(shù)學講課成為一種“過程講課〞,讓學生在
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年安全員A證考試預(yù)測試題(有一套)附答案詳解
- 寧波浙江寧波市江北區(qū)面向2025屆高校畢業(yè)生招聘高層次緊缺人才25人筆試歷年參考題庫附帶答案詳解
- 寧波浙江寧波余姚市公路與運輸管理中心招聘編外工作人員筆試歷年參考題庫附帶答案詳解
- 天門2025年湖北天門市大學生鄉(xiāng)村醫(yī)生專項招聘19人筆試歷年參考題庫附帶答案詳解
- 天津2025年天津市機關(guān)后勤事務(wù)服務(wù)中心招聘6人筆試歷年參考題庫附帶答案詳解
- 大連2025年遼寧大連市甘井子區(qū)教育系統(tǒng)自主招聘應(yīng)屆生104人筆試歷年參考題庫附帶答案詳解
- 四川2025下半年四川省農(nóng)業(yè)農(nóng)村廳直屬事業(yè)單位招聘153人筆試歷年參考題庫附帶答案詳解
- 嘉興浙江嘉興大學附屬醫(yī)院(嘉興市第一醫(yī)院)招聘高層次人才79人(第一批)筆試歷年參考題庫附帶答案詳解
- 廈門2025年福建廈門市委黨校廈門市行政學院廈門市社會主義學院教師招聘5人筆試歷年參考題庫附帶答案詳解
- 南通2025年江蘇南通市崇川區(qū)區(qū)屬國有公司招聘工作人員16人筆試歷年參考題庫附帶答案詳解
- 停車場地租用合同書
- 2025年福建廈門高三一模高考數(shù)學試卷試題(含答案詳解)
- 喉返神經(jīng)損傷預(yù)防
- 《汽車用先進高強鋼 薄板和薄帶 擴孔試驗方法》
- 部編版五年級語文上冊快樂讀書吧測試題及答案
- 衛(wèi)星傳輸專業(yè)試題題庫及答案
- 脾破裂手術(shù)配合
- 2023年高級售后工程師年度總結(jié)及下一年展望
- 【語文】湖南省長沙市實驗小學小學四年級上冊期末試卷(含答案)
- 阿米巴經(jīng)營模式-人人都是經(jīng)營者推行授課講義課件
- 手術(shù)室外氣管插管術(shù)課件
評論
0/150
提交評論