版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
2022-2023學(xué)年高三上數(shù)學(xué)期末模擬試卷注意事項(xiàng):1.答題前,考生先將自己的姓名、準(zhǔn)考證號(hào)填寫清楚,將條形碼準(zhǔn)確粘貼在考生信息條形碼粘貼區(qū)。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書寫,字體工整、筆跡清楚。3.請(qǐng)按照題號(hào)順序在各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無(wú)效;在草稿紙、試題卷上答題無(wú)效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準(zhǔn)使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.在等腰直角三角形中,,為的中點(diǎn),將它沿翻折,使點(diǎn)與點(diǎn)間的距離為,此時(shí)四面體的外接球的表面積為().A. B. C. D.2.盒中裝有形狀、大小完全相同的5張“刮刮卡”,其中只有2張“刮刮卡”有獎(jiǎng),現(xiàn)甲從盒中隨機(jī)取出2張,則至少有一張有獎(jiǎng)的概率為()A. B. C. D.3.已知,則()A. B. C. D.24.從5名學(xué)生中選出4名分別參加數(shù)學(xué),物理,化學(xué),生物四科競(jìng)賽,其中甲不能參加生物競(jìng)賽,則不同的參賽方案種數(shù)為A.48 B.72 C.90 D.965.已知展開式的二項(xiàng)式系數(shù)和與展開式中常數(shù)項(xiàng)相等,則項(xiàng)系數(shù)為()A.10 B.32 C.40 D.806.2019年10月1日上午,慶祝中華人民共和國(guó)成立70周年閱兵儀式在天安門廣場(chǎng)隆重舉行.這次閱兵不僅展示了我國(guó)的科技軍事力量,更是讓世界感受到了中國(guó)的日新月異.今年的閱兵方陣有一個(gè)很搶眼,他們就是院??蒲蟹疥?他們是由軍事科學(xué)院、國(guó)防大學(xué)、國(guó)防科技大學(xué)聯(lián)合組建.若已知甲、乙、丙三人來(lái)自上述三所學(xué)校,學(xué)歷分別有學(xué)士、碩士、博士學(xué)位.現(xiàn)知道:①甲不是軍事科學(xué)院的;②來(lái)自軍事科學(xué)院的不是博士;③乙不是軍事科學(xué)院的;④乙不是博士學(xué)位;⑤國(guó)防科技大學(xué)的是研究生.則丙是來(lái)自哪個(gè)院校的,學(xué)位是什么()A.國(guó)防大學(xué),研究生 B.國(guó)防大學(xué),博士C.軍事科學(xué)院,學(xué)士 D.國(guó)防科技大學(xué),研究生7.函數(shù)的定義域?yàn)椋ǎ〢. B. C. D.8.如圖,平面ABCD,ABCD為正方形,且,E,F(xiàn)分別是線段PA,CD的中點(diǎn),則異面直線EF與BD所成角的余弦值為()A. B. C. D.9.在中,“”是“為鈍角三角形”的()A.充分非必要條件 B.必要非充分條件 C.充要條件 D.既不充分也不必要條件10.函數(shù)()的圖像可以是()A. B.C. D.11.已知函數(shù)fx=sinωx+π6+A.16,13 B.112.已知雙曲線:的左右焦點(diǎn)分別為,,為雙曲線上一點(diǎn),為雙曲線C漸近線上一點(diǎn),,均位于第一象限,且,,則雙曲線的離心率為()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.已知兩點(diǎn),,若直線上存在點(diǎn)滿足,則實(shí)數(shù)滿足的取值范圍是__________.14.已知,滿足不等式組,則的取值范圍為________.15.已知向量,,若,則______.16.已知“在中,”,類比以上正弦定理,“在三棱錐中,側(cè)棱與平面所成的角為、與平面所成的角為,則________.三、解答題:共70分。解答應(yīng)寫出文字說(shuō)明、證明過(guò)程或演算步驟。17.(12分)已知函數(shù)(,),且對(duì)任意,都有.(Ⅰ)用含的表達(dá)式表示;(Ⅱ)若存在兩個(gè)極值點(diǎn),,且,求出的取值范圍,并證明;(Ⅲ)在(Ⅱ)的條件下,判斷零點(diǎn)的個(gè)數(shù),并說(shuō)明理由.18.(12分)的內(nèi)角,,的對(duì)邊分別為,,,其面積記為,滿足.(1)求;(2)若,求的值.19.(12分)已知函數(shù)()(1)函數(shù)在點(diǎn)處的切線方程為,求函數(shù)的極值;(2)當(dāng)時(shí),對(duì)于任意,當(dāng)時(shí),不等式恒成立,求出實(shí)數(shù)的取值范圍.20.(12分)已知點(diǎn)和橢圓.直線與橢圓交于不同的兩點(diǎn),.(1)當(dāng)時(shí),求的面積;(2)設(shè)直線與橢圓的另一個(gè)交點(diǎn)為,當(dāng)為中點(diǎn)時(shí),求的值.21.(12分)已知三棱錐中側(cè)面與底面都是邊長(zhǎng)為2的等邊三角形,且面面,分別為線段的中點(diǎn).為線段上的點(diǎn),且.(1)證明:為線段的中點(diǎn);(2)求二面角的余弦值.22.(10分)已知函數(shù)f(x)=x(1)討論fx(2)當(dāng)x≥-1時(shí),fx+a
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、D【解析】
如圖,將四面體放到直三棱柱中,求四面體的外接球的半徑轉(zhuǎn)化為求三棱柱外接球的半徑,然后確定球心在上下底面外接圓圓心連線中點(diǎn),這樣根據(jù)幾何關(guān)系,求外接球的半徑.【詳解】中,易知,翻折后,,,設(shè)外接圓的半徑為,,,如圖:易得平面,將四面體放到直三棱柱中,則球心在上下底面外接圓圓心連線中點(diǎn),設(shè)幾何體外接球的半徑為,,四面體的外接球的表面積為.故選:D【點(diǎn)睛】本題考查幾何體的外接球的表面積,意在考查空間想象能力,和計(jì)算能力,屬于中檔題型,求幾何體的外接球的半徑時(shí),一般可以用補(bǔ)形法,因正方體,長(zhǎng)方體的外接球半徑容易求,可以將一些特殊的幾何體補(bǔ)形為正方體或長(zhǎng)方體,比如三條側(cè)棱兩兩垂直的三棱錐,或是構(gòu)造直角三角形法,確定球心的位置,構(gòu)造關(guān)于外接球半徑的方程求解.2、C【解析】
先計(jì)算出總的基本事件的個(gè)數(shù),再計(jì)算出兩張都沒獲獎(jiǎng)的個(gè)數(shù),根據(jù)古典概型的概率,求出兩張都沒有獎(jiǎng)的概率,由對(duì)立事件的概率關(guān)系,即可求解.【詳解】從5張“刮刮卡”中隨機(jī)取出2張,共有種情況,2張均沒有獎(jiǎng)的情況有(種),故所求概率為.故選:C.【點(diǎn)睛】本題考查古典概型的概率、對(duì)立事件的概率關(guān)系,意在考查數(shù)學(xué)建模、數(shù)學(xué)計(jì)算能力,屬于基礎(chǔ)題.3、B【解析】
結(jié)合求得的值,由此化簡(jiǎn)所求表達(dá)式,求得表達(dá)式的值.【詳解】由,以及,解得..故選:B【點(diǎn)睛】本小題主要考查利用同角三角函數(shù)的基本關(guān)系式化簡(jiǎn)求值,考查二倍角公式,屬于中檔題.4、D【解析】因甲不參加生物競(jìng)賽,則安排甲參加另外3場(chǎng)比賽或甲學(xué)生不參加任何比賽①當(dāng)甲參加另外3場(chǎng)比賽時(shí),共有?=72種選擇方案;②當(dāng)甲學(xué)生不參加任何比賽時(shí),共有=24種選擇方案.綜上所述,所有參賽方案有72+24=96種故答案為:96點(diǎn)睛:本題以選擇學(xué)生參加比賽為載體,考查了分類計(jì)數(shù)原理、排列數(shù)與組合數(shù)公式等知識(shí),屬于基礎(chǔ)題.5、D【解析】
根據(jù)二項(xiàng)式定理通項(xiàng)公式可得常數(shù)項(xiàng),然后二項(xiàng)式系數(shù)和,可得,最后依據(jù),可得結(jié)果.【詳解】由題可知:當(dāng)時(shí),常數(shù)項(xiàng)為又展開式的二項(xiàng)式系數(shù)和為由所以當(dāng)時(shí),所以項(xiàng)系數(shù)為故選:D【點(diǎn)睛】本題考查二項(xiàng)式定理通項(xiàng)公式,熟悉公式,細(xì)心計(jì)算,屬基礎(chǔ)題.6、C【解析】
根據(jù)①③可判斷丙的院校;由②和⑤可判斷丙的學(xué)位.【詳解】由題意①甲不是軍事科學(xué)院的,③乙不是軍事科學(xué)院的;則丙來(lái)自軍事科學(xué)院;由②來(lái)自軍事科學(xué)院的不是博士,則丙不是博士;由⑤國(guó)防科技大學(xué)的是研究生,可知丙不是研究生,故丙為學(xué)士.綜上可知,丙來(lái)自軍事科學(xué)院,學(xué)位是學(xué)士.故選:C.【點(diǎn)睛】本題考查了合情推理的簡(jiǎn)單應(yīng)用,由條件的相互牽制判斷符合要求的情況,屬于基礎(chǔ)題.7、C【解析】
函數(shù)的定義域應(yīng)滿足故選C.8、C【解析】
分別以AB,AD,AP所在直線為x軸,y軸,軸,建立如圖所示的空間直角坐標(biāo)系,再利用向量法求異面直線EF與BD所成角的余弦值.【詳解】由題可知,分別以AB,AD,AP所在直線為x軸,y軸,軸,建立如圖所示的空間直角坐標(biāo)系.設(shè).則.故異面直線EF與BD所成角的余弦值為.故選:C【點(diǎn)睛】本題主要考查空間向量和異面直線所成的角的向量求法,意在考查學(xué)生對(duì)這些知識(shí)的理解掌握水平.9、C【解析】分析:從兩個(gè)方向去判斷,先看能推出三角形的形狀是銳角三角形,而非鈍角三角形,從而得到充分性不成立,再看當(dāng)三角形是鈍角三角形時(shí),也推不出成立,從而必要性也不滿足,從而選出正確的結(jié)果.詳解:由題意可得,在中,因?yàn)?,所以,因?yàn)椋?,,結(jié)合三角形內(nèi)角的條件,故A,B同為銳角,因?yàn)?,所以,即,所以,因此,所以是銳角三角形,不是鈍角三角形,所以充分性不滿足,反之,若是鈍角三角形,也推不出“,故必要性不成立,所以為既不充分也不必要條件,故選D.點(diǎn)睛:該題考查的是有關(guān)充分必要條件的判斷問(wèn)題,在解題的過(guò)程中,需要用到不等式的等價(jià)轉(zhuǎn)化,余弦的和角公式,誘導(dǎo)公式等,需要明確對(duì)應(yīng)此類問(wèn)題的解題步驟,以及三角形形狀對(duì)應(yīng)的特征.10、B【解析】
根據(jù),可排除,然后采用導(dǎo)數(shù),判斷原函數(shù)的單調(diào)性,可得結(jié)果.【詳解】由題可知:,所以當(dāng)時(shí),,又,令,則令,則所以函數(shù)在單調(diào)遞減在單調(diào)遞增,故選:B【點(diǎn)睛】本題考查函數(shù)的圖像,可從以下指標(biāo)進(jìn)行觀察:(1)定義域;(2)奇偶性;(3)特殊值;(4)單調(diào)性;(5)值域,屬基礎(chǔ)題.11、A【解析】
將fx整理為3sinωx+π3,根據(jù)x的范圍可求得ωx+π3∈π【詳解】f當(dāng)x∈0,π時(shí),又f0=3sin由fx在0,π上的值域?yàn)?2解得:ω∈本題正確選項(xiàng):A【點(diǎn)睛】本題考查利用正弦型函數(shù)的值域求解參數(shù)范圍的問(wèn)題,關(guān)鍵是能夠結(jié)合正弦型函數(shù)的圖象求得角的范圍的上下限,從而得到關(guān)于參數(shù)的不等式.12、D【解析】由雙曲線的方程的左右焦點(diǎn)分別為,為雙曲線上的一點(diǎn),為雙曲線的漸近線上的一點(diǎn),且都位于第一象限,且,可知為的三等分點(diǎn),且,點(diǎn)在直線上,并且,則,,設(shè),則,解得,即,代入雙曲線的方程可得,解得,故選D.點(diǎn)睛:本題考查了雙曲線的幾何性質(zhì),離心率的求法,考查了轉(zhuǎn)化思想以及運(yùn)算能力,雙曲線的離心率是雙曲線最重要的幾何性質(zhì),求雙曲線的離心率(或離心率的取值范圍),常見有兩種方法:①求出,代入公式;②只需要根據(jù)一個(gè)條件得到關(guān)于的齊次式,轉(zhuǎn)化為的齊次式,然后轉(zhuǎn)化為關(guān)于的方程(不等式),解方程(不等式),即可得(的取值范圍).二、填空題:本題共4小題,每小題5分,共20分。13、【解析】
問(wèn)題轉(zhuǎn)化為求直線與圓有公共點(diǎn)時(shí),的取值范圍,利用數(shù)形結(jié)合思想能求出結(jié)果.【詳解】解:直線,點(diǎn),,直線上存在點(diǎn)滿足,的軌跡方程是.如圖,直線與圓有公共點(diǎn),圓心到直線的距離:,解得.實(shí)數(shù)的取值范圍為.故答案為:.【點(diǎn)睛】本題主要考查直線方程、圓、點(diǎn)到直線的距離公式等基礎(chǔ)知識(shí),考查推理論證能力、運(yùn)算求解能力,考查化歸與轉(zhuǎn)化思想、函數(shù)與方程思想,屬于中檔題.14、【解析】
畫出不等式組表示的平面區(qū)域如下圖中陰影部分所示,易知在點(diǎn)處取得最小值,即,所以由圖可知的取值范圍為.15、1【解析】
根據(jù)向量加法和減法的坐標(biāo)運(yùn)算,先分別求得與,再結(jié)合向量的模長(zhǎng)公式即可求得的值.【詳解】向量,則,則因?yàn)榧?化簡(jiǎn)可得解得故答案為:【點(diǎn)睛】本題考查了向量坐標(biāo)加法和減法的運(yùn)算,向量模長(zhǎng)的求法,屬于基礎(chǔ)題.16、【解析】
類比,三角形邊長(zhǎng)類比三棱錐各面的面積,三角形內(nèi)角類比三棱錐中側(cè)棱與面所成角.【詳解】,故,【點(diǎn)睛】本題考查類比推理.類比正弦定理可得,類比時(shí)有結(jié)構(gòu)類比,方法類比等.三、解答題:共70分。解答應(yīng)寫出文字說(shuō)明、證明過(guò)程或演算步驟。17、(1)(2)見解析(3)見解析【解析】試題分析:利用賦值法求出關(guān)系,求函數(shù)導(dǎo)數(shù),要求函數(shù)有兩個(gè)極值點(diǎn),只需在內(nèi)有兩個(gè)實(shí)根,利用一元二次方程的根的分布求出的取值范圍,再根據(jù)函數(shù)圖象和極值的大小判斷零點(diǎn)的個(gè)數(shù).試題解析:(Ⅰ)根據(jù)題意:令,可得,所以,經(jīng)驗(yàn)證,可得當(dāng)時(shí),對(duì)任意,都有,所以.(Ⅱ)由(Ⅰ)可知,且,所以,令,要使存在兩個(gè)極值點(diǎn),,則須有有兩個(gè)不相等的正數(shù)根,所以或解得或無(wú)解,所以的取值范圍,可得,由題意知,令,則.而當(dāng)時(shí),,即,所以在上單調(diào)遞減,所以即時(shí),.(Ⅲ)因?yàn)?,.令得,.由(Ⅱ)知時(shí),的對(duì)稱軸,,,所以.又,可得,此時(shí),在上單調(diào)遞減,上單調(diào)遞增,上單調(diào)遞減,所以最多只有三個(gè)不同的零點(diǎn).又因?yàn)椋栽谏线f增,即時(shí),恒成立.根據(jù)(2)可知且,所以,即,所以,使得.由,得,又,,所以恰有三個(gè)不同的零點(diǎn):,1,.綜上所述,恰有三個(gè)不同的零點(diǎn).【點(diǎn)睛】利用賦值法求出關(guān)系,利用函數(shù)導(dǎo)數(shù),研究函數(shù)的單調(diào)性,要求函數(shù)有兩個(gè)極值點(diǎn),只需在內(nèi)有兩個(gè)實(shí)根,利用一元二次方程的根的分布求出的取值范圍,利用函數(shù)的導(dǎo)數(shù)研究函數(shù)的單調(diào)性、極值,再根據(jù)函數(shù)圖象和極值的大小判斷零點(diǎn)的個(gè)數(shù)是近年高考?jí)狠S題的熱點(diǎn).18、(1);(2)【解析】
(1)根據(jù)三角形面積公式及平面向量數(shù)量積定義代入公式,即可求得,進(jìn)而求得的值;(2)根據(jù)正弦定理將邊化為角,結(jié)合(1)中的值,即可將表達(dá)式化為的三角函數(shù)式;結(jié)合正弦和角公式與輔助角公式化簡(jiǎn),即可求得和,進(jìn)而由正弦定理確定,代入整式即可求解.【詳解】(1)因?yàn)?,所以由三角形面積公式及平面向量數(shù)量積運(yùn)算可得,所以.因?yàn)?,所?(2)因?yàn)?,所以由正弦定理代入化?jiǎn)可得,由(1),代入可得,展開化簡(jiǎn)可得,根據(jù)輔助角公式化簡(jiǎn)可得.因?yàn)椋?,所以,所以為等腰三角形,且,所?【點(diǎn)睛】本題考查了正弦定理在解三角形中的應(yīng)用,三角形面積公式的應(yīng)用,平面向量數(shù)量積的運(yùn)算,正弦和角公式及輔助角公式的簡(jiǎn)單應(yīng)用,屬于基礎(chǔ)題.19、(1)極小值為,極大值為.(2)【解析】
(1)根據(jù)斜線的斜率即可求得參數(shù),再對(duì)函數(shù)求導(dǎo),即可求得函數(shù)的極值;(2)根據(jù)題意,對(duì)目標(biāo)式進(jìn)行變形,構(gòu)造函數(shù),根據(jù)是單調(diào)減函數(shù),分離參數(shù),求函數(shù)的最值即可求得結(jié)果.【詳解】(1)函數(shù)的定義域?yàn)?,,,,可知,,解得,,可知在,時(shí),,函數(shù)單調(diào)遞增,在時(shí),,函數(shù)單調(diào)遞減,可知函數(shù)的極小值為,極大值為.(2)可以變形為,可得,可知函數(shù)在上單調(diào)遞減,,可得,設(shè),,可知函數(shù)在單調(diào)遞減,,可知,可知參數(shù)的取值范圍為.【點(diǎn)睛】本題考查由切線的斜率求參數(shù)的值,以及對(duì)具體函數(shù)極值的求解,涉及構(gòu)造函數(shù)法,以及利用導(dǎo)數(shù)求函數(shù)的值域;第二問(wèn)的難點(diǎn)在于對(duì)目標(biāo)式的變形,屬綜合性中檔題.20、(1);(2)或【解析】
(1)聯(lián)立直線的方程和橢圓方程,求得交點(diǎn)的橫坐標(biāo),由此求得三角形的面積.(2)法一:根據(jù)的坐標(biāo)求得的坐標(biāo),將的坐標(biāo)都代入橢圓方程,化簡(jiǎn)后求得的坐標(biāo),進(jìn)而求得的值.法二:設(shè)出直線的方程,聯(lián)立直線的方程和橢圓的方程,化簡(jiǎn)后寫出根與系數(shù)關(guān)系,結(jié)合求得點(diǎn)的坐標(biāo),進(jìn)而求得的值.【詳解】(1)設(shè),,若,則直線的方程為,由,得,解得,,設(shè)直線與軸交于點(diǎn),則且.(2)法一:設(shè)點(diǎn)因?yàn)?,,所以又點(diǎn),都在橢圓上,所以解得或所以或.法二:設(shè)顯然直線有斜率,設(shè)直線的方程為由,得所以又解得或所以或所以或.【點(diǎn)睛】本小題主要考查直線和橢圓的位置關(guān)系,考查橢圓中三角形面積的求法,考查運(yùn)算求解能力,屬于中檔題.21、(1)見解析;(2)【解析】
(1)設(shè)為中點(diǎn),連結(jié),先證明,可證得,假設(shè)不為線段的中點(diǎn),可得平面,這與矛盾,即得證;(2)以為原點(diǎn),以分別為軸建立空間直角坐標(biāo)系,分別求解平面,平面的法向量的法向量,利用二面角的向量公式,即得解.【詳解】(1)設(shè)為中點(diǎn),連結(jié).∴,,又平面,平面,∴.又分別為中點(diǎn),,又,∴.假設(shè)不為線段的中點(diǎn),則與是平面內(nèi)內(nèi)的相交直線,從而平面,這與矛盾,所以為線段的中點(diǎn).(2)以為原點(diǎn),由條件面面,∴,以分別為軸建立空間直角坐標(biāo)系,則,,,,,,.設(shè)平面的法向量為所以取,則,.同法可求得平面的法向量為∴,由圖知二面角為銳二面角,二面角的余弦值為.【點(diǎn)睛】本題考查了立體幾何與空間向量綜合,考查了學(xué)生邏輯推理,空間想象,數(shù)學(xué)運(yùn)算的能力,屬于中檔題.22、(1)見解析;(2)-∞,1【解析】
(1)f′(x)=(x+1)ex-ax-a=(x+1)(ex-a).對(duì)a分類討論,即可得出單調(diào)性.
(2)由xex-ax-a+1≥0,可得a(x+1)≤xex+1,當(dāng)x=-1時(shí),0≤-1e+1恒成立.當(dāng)x>-1時(shí),a≤xe【詳解】解法一:(1)f①當(dāng)a≤0時(shí),x(-∞-1(-1,+∞)f-0+
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 2024年西鄉(xiāng)縣幼兒園教師招教考試備考題庫(kù)帶答案解析(奪冠)
- 2025年新賓滿族自治縣幼兒園教師招教考試備考題庫(kù)帶答案解析
- 2025年廣西工商職業(yè)技術(shù)學(xué)院?jiǎn)握新殬I(yè)技能考試模擬測(cè)試卷帶答案解析
- 2025年靖安縣幼兒園教師招教考試備考題庫(kù)附答案解析(必刷)
- 2024年魚臺(tái)縣幼兒園教師招教考試備考題庫(kù)附答案解析(奪冠)
- 2025年梅河口康美職業(yè)技術(shù)學(xué)院?jiǎn)握新殬I(yè)適應(yīng)性測(cè)試題庫(kù)附答案解析
- 2025年懷仁縣招教考試備考題庫(kù)附答案解析(奪冠)
- 2024年湖南冶金職業(yè)技術(shù)學(xué)院馬克思主義基本原理概論期末考試題附答案解析(奪冠)
- 2025年廣東食品藥品職業(yè)學(xué)院馬克思主義基本原理概論期末考試模擬題及答案解析(必刷)
- 2025年渭源縣幼兒園教師招教考試備考題庫(kù)附答案解析(奪冠)
- 冷庫(kù)安全生產(chǎn)責(zé)任制制度
- 陜西省西安市高新一中、交大附中、師大附中2026屆高二生物第一學(xué)期期末調(diào)研模擬試題含解析
- 2025兒童心肺復(fù)蘇與急救指南詳解課件
- 大推力液體火箭發(fā)動(dòng)機(jī)綜合測(cè)試中心建設(shè)項(xiàng)目可行性研究報(bào)告模板立項(xiàng)申批備案
- 湖北中煙2024年招聘考試真題(含答案解析)
- 運(yùn)維檔案管理制度
- 2025年航空發(fā)動(dòng)機(jī)涂層材料技術(shù)突破行業(yè)報(bào)告
- 2026年汽車美容店員工績(jī)效工資考核辦法細(xì)則
- 家譜圖評(píng)估與干預(yù)
- 公路施工安全管理課件 模塊五 路基路面施工安全
- 2025智能化產(chǎn)業(yè)市場(chǎng)深度觀察及未來(lái)方向與投資潛力研究調(diào)研報(bào)告
評(píng)論
0/150
提交評(píng)論