版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
class-exercises1、1011100010112=
8=
162、(156)10=()23、convert0.3910toanumberinradix2.Theprecisionmustachieve10%。
tenminutesclass-exercises1、1011100010112=
5613
8=B8B
162、(156)10=(10011100)23、將0.3910轉換為二進制數(shù),要求精度達到10%。
0.01102ReviewofthelastlessonPositionalNumberSystemsMSD,LSD,MSB,LSBGeneralPositional-Number-SystemConversionsAdecimalfraction
AnumberinBinaryradixBinaryadditionandsubtractionBinarynumberswithcertainwidth;Thenumbersalwaysbesetas0.xxxxxxxx;Wecantakethesenumbersasintegersforoperations!MSB/LSB
UnsignednumberOperationsforunsignednumbers0+0=01+0=11+1=10AdditionC:carryS:sum
OperationsforunsignednumbersAddition:Overflow?Wrong!Right!0×A=01×A=AMultiplicationShift-add:useaddersandshift-registers;Theproductwidthwillbe2n!OperationsforunsignednumbersNewruledifferfromaddMaybegetnegativenumbersubtraction
ShouldusesignednumbertoexpresspositiveandnegativeOperationsforunsignednumbersOncethesignednumbersbeused,subtractioncanbemadebyadd!OperationsforunsignednumbersSubtractionruleisnotnecessary!2.5RepresentationofNegativeNumbers
(負數(shù)的表示)2.5.1Signed-MagnitudeRepresentationP34[符號–數(shù)值表示法(原碼)]2.5.2ComplementNumberSystemsP35(補碼數(shù)制)2.5.3Radix-ComplementRepresentation
P36(基數(shù)補碼表示法)2.5.4Two’s-ComplementRepresentation
P37(二進制補碼表示法)2.6Two’s-ComplementAdditionandSubtractionP39
(二進制補碼的加減法)Table2-6
P40(十進制數(shù)與4位二進制數(shù)對照表)2.6.3Overflow
(溢出)
P412.5.1
Signed-MagnitudeRepresentationanumberconsistsofamagnitudeandasymbolindicatingwhetherthemagnitudeispositiveornegative.
MSBastheSignbit(0=plus,1=minus)[最高有效位表示符號位(0=正,1=負)]01111111=+12711111111=-12700101110=+4610101110=-4600000000=+010000000=-02.5.1Signed-MagnitudeRepresentation[符號–數(shù)值表示法(原碼)]TwopossiblerepresentationsofZero[零有兩種表示(+0、–0)]2.Ann-bitsigned-magnitudeintegerrangeis(n位二進制整數(shù)表示范圍):
–(2n-1–1)~+(2n-1–1)Thesigned-magnitudesystemhasanequalnumberofpositiveandnegativeintegers.
P35representtheresultwith8-bitsigned-magnitudeinteger!110-110=?thesigned-magnitudesystemnegatesanumberbychangingitssign.
ComplementNumberSystemsitnegatesanumberbytakingitscomplementasdefinedbythesystem.
2.5.22.5.2ComplementNumberSystems(補碼數(shù)制)radix–Complement(基數(shù)補碼)2.DiminishedRadix–Complement[基數(shù)減1補碼(反碼)]2.5.2ComplementNumberSystems(補碼數(shù)制)ann-bitnumberDD=dn–1dn–2···d1d0
.Theradixpointisontherightandsothenumberisaninteger.Ifanoperationproducesaresultthatrequiresmorethanndigits,wethrowawaytheextrahighorder
digit(s).IfanumberD
iscomplementedtwice,theresultis
D.(P35)
2.5.3Radix-ComplementRepresentationThecomplementofann-digitnumberisobtainedbysubtractingitfromrn.
r’scomplement=rn-D(n位數(shù)D的基數(shù)補碼等于從rn
中減去該數(shù))Example:Table2-4P362.5.3Radix-ComplementRepresentation2.5.3Radix-ComplementRepresentation
r’scomplement=rn-D
IfDisbetween1andrn
–1,thissubtractionproduces
anothernumberbetween1andrn-1.
whatistheresultofthesubtraction,IfDis0?2.5.3Radix-ComplementRepresentation
r’scomplement=rn-D
IfDisbetween1andrn
–1,thissubtractionproduces
anothernumberbetween1andrn-1.
whatistheresultofthesubtraction,IfDis0?0000000…0(n-bit)
(positive)thereisonlyonerepresentationofzeroinaradix-complementsystem.
DiminishedRadix–ComplementRepresentation
[基數(shù)減1補碼表示法(反碼)]
TheDiminishedRadix–Complementofann-digitnumberisobtainedbysubtractingitfromrn-1
[n位數(shù)的反碼等于從rn–1中減去該數(shù)]
Example:Table2-4,2-5P.36(r-1)’sComplement=rn–1-D
*2.5.6(P38)
therearetwo
representationsofzero,positivezero(00×××00)andnegativezero(11×××11).
2.5.3Radix-ComplementRepresentation2.5.3Radix-ComplementRepresentationAdvantagern–D=[(rn-1)-D]+1ThiscanbeaccomplishedbycomplementingtheindividualdigitsofD,2.5.4Two’s–ComplementRepresentation
(二進制補碼表示法)P37Two’s-Complement(二進制補碼的求取):MSB
(thesignbit):1=minus;0=plus
WeightoftheMSB:-2n-13.Therangeofrepresentablenumbersis
-(2n-1)through+(2n-1-1).
Two’s-Complement
(二進制補碼的求取)Example1.Writethe8-bittwo’s-complementrepresentationforthedecimalnumber:-119.(若約定字長是一個字節(jié),試求-11910的補碼表示。)+11910=011101112,asformula(公式):2n-D=(2n-1-D)+128-1:11111111subtract(減去)+119;-0111011110001000
plus(加)1:+1
-11910:100010012Two’s-Complement
(二進制補碼的求取)Example1.Writethe8-bittwo’s-complementrepresentationforthedecimalnumber:-119.(若約定字長是一個字節(jié),試求-11910的補碼表示。)+11910=011101112,
Two’s-Complement
(二進制補碼的求取)Example1.Writethe8-bittwo’s-complementrepresentationforthedecimalnumber:-119.(若約定字長是一個字節(jié),試求-11910的補碼表示。)+11910=011101112,
100010002+1100010012=-11910帶符號位一起按位取反再+1,得到相反數(shù)的補碼.Table2-6Decimaland4-bitnumbers(P40)DecimalSigned-MagnitudeOne’scomplementTwo’scomplement-8————1000-7111110001001-6111010011010-5110110101011-4110010111100-3101111001101-2101011011110-110011110111101000或00001111或000000001000100010001200100010001030011001100114010001000100501010101010160110011001107011101110111SumupfortheComplement
(總結)Positivenumberhasthesame:
Sign-Magnitude,Ones’–Complement,andTwo’s-Complement(正數(shù)的原碼、反碼、補碼相同)
SumupfortheComplement
(總結)
ComplementNumberSystemssigned-magnitudesystem010001101111(010001)(110001)+1710-1710SumupfortheComplement
(總結)
ComplementNumberSystemssigned-magnitudesystem(010001)(101111)(010001)(110001)+1710-1710不變+1710-1710符號位改變符號位不變其余按位取反加1.連同符號位一起按位取反加1.連同符號位一起按位取反加1.符號位改變Signextensionforatwo’scomplementnumber
(符號位擴展)Wecanconvertann-bittwo’s-complementnumberXintoanm-bitone,butsomecareisneeded.Ifm>n,wemustappendm-ncopiesofX’ssignbittotheleftofX.Thatis,wepadapositivenumberwith0sandanegativeonewith1s;thisiscalledsignextension.Ifm<n,wediscard
X’sn–mleftmostbits;however,theresultisvalidonlyifallofthediscardedbitsarethesameasthesignbitoftheresult.ExampleforSignextensionPleaseconvertthesetwo’scomplementnumbers01111and1001into8-bit.01111=000011111001=11111001NOTE:theresultofextensionisintheTwo’s-complementnumbersystem.2.6Two’s–ComplementAdditionandSubtraction
(二進制補碼的加法和減法)wedefine[x]tobethetwo’scomplementrepresentationofx
[x+y]=([x]+[y])[x-y]=([x]+[-y])
2.6Two’s–ComplementAdditionandSubtraction
(二進制補碼的加法和減法)
[x+y]=([x]+[y]);[x-y]=([x]+[-y])1101+1010=?1101+1101=?
OVERFLOE?000000010010001101000101100010011010110111111110101111000111011001234589101315141112764位無符號二進制數(shù)0000000100100011010001011000100110101101111111101011110001110110+0+1+2+3+4+587631254+7+64位二進制補碼Range:-8~+7
Wecanadded+ntothatnumberbycountingupntimes,thatis,bymovingthearrownpositionsclockwise.
Wecansubtractnfromanumberbycountingdownntimes,thatis,bymovingthearrownpositionscounterclockwise..Theresultwillalwaysbecorrectsumaslongastherangeofthenumbersystemisnotexceeded.Modularcounting(模計算)-nWhatismostinterestingisthatwecan
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 財務制度管理規(guī)定下發(fā)
- 醫(yī)院基建科財務制度
- 及時講解財務制度
- 政府購買服務財務制度
- 中小型公司財財務制度
- 水果超市財務制度
- 農村自來水供水運營公司應急搶修制度
- 關于出差制度
- 公司對項目安全檢查制度
- 坡地建房施工方案(3篇)
- 2026海南安??毓捎邢挢熑喂菊衅?1人筆試模擬試題及答案解析
- 2026上海碧海金沙投資發(fā)展有限公司社會招聘參考題庫必考題
- 2026年張家界航空工業(yè)職業(yè)技術學院單招職業(yè)傾向性考試模擬測試卷新版
- 2026遼寧機場管理集團校招面筆試題及答案
- 2025徽銀金融租賃有限公司社會招聘筆試歷年典型考題及考點剖析附帶答案詳解
- 孩子如何正確與師長相處與溝通
- 精神病學考試重點第七版
- 塔吊運行日志
- GB/T 14536.1-2022電自動控制器第1部分:通用要求
- GA/T 1362-2016警用裝備倉庫物資庫存管理規(guī)范
- 鋼結構基本原理及設計PPT全套課件
評論
0/150
提交評論