2022年重慶市外國語學校數(shù)學九年級第一學期期末經(jīng)典試題含解析_第1頁
2022年重慶市外國語學校數(shù)學九年級第一學期期末經(jīng)典試題含解析_第2頁
2022年重慶市外國語學校數(shù)學九年級第一學期期末經(jīng)典試題含解析_第3頁
2022年重慶市外國語學校數(shù)學九年級第一學期期末經(jīng)典試題含解析_第4頁
2022年重慶市外國語學校數(shù)學九年級第一學期期末經(jīng)典試題含解析_第5頁
免費預覽已結束,剩余17頁可下載查看

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

2022-2023學年九上數(shù)學期末模擬試卷注意事項:1.答題前,考生先將自己的姓名、準考證號碼填寫清楚,將條形碼準確粘貼在條形碼區(qū)域內。2.答題時請按要求用筆。3.請按照題號順序在答題卡各題目的答題區(qū)域內作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試卷上答題無效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題(每題4分,共48分)1.如果(m+2)x|m|+mx-1=0是關于x的一元二次方程,那么m的值為()A.2或-2 B.2 C.-2 D.02.下列命題中,①直徑是圓中最長的弦;②長度相等的兩條弧是等??;③半徑相等的兩個圓是等圓;④半徑不是弧,半圓包括它所對的直徑,其中正確的個數(shù)是()A. B. C. D.3.不透明的袋子中裝有形狀、大小、質地完全相同的6個球,其中4個黑球、2個白球,從袋子中一次摸出3個球,下列事件是不可能事件的是()A.摸出的是3個白球 B.摸出的是3個黑球C.摸出的是2個白球、1個黑球 D.摸出的是2個黑球、1個白球4.如圖,在△ABC中,AD⊥BC,垂足為點D,若AC=,∠C=45°,tan∠ABC=3,則BD等于()A.2 B.3 C. D.5.如圖,是正內一點,若將繞點旋轉到,則的度數(shù)為()A. B.C. D.6.如圖,在Rt△ABC中,∠ACB=90°,如果AC=3,AB=5,那么sinB等于()A. B. C. D.7.在平面直角坐標系中,拋物線與軸交于點,與軸交于點,則的面積是()A.6 B.10 C.12 D.158.已知y關于x的函數(shù)表達式是,下列結論不正確的是()A.若,函數(shù)的最大值是5B.若,當時,y隨x的增大而增大C.無論a為何值時,函數(shù)圖象一定經(jīng)過點D.無論a為何值時,函數(shù)圖象與x軸都有兩個交點9.方程﹣1=的解是()A.﹣1 B.2或﹣1 C.﹣2或3 D.310.用小立方塊搭成的幾何體,從正面看和從上面看的形狀圖如下,則組成這樣的幾何體需要的立方塊個數(shù)為()A.最多需要8塊,最少需要6塊 B.最多需要9塊,最少需要6塊C.最多需要8塊,最少需要7塊 D.最多需要9塊,最少需要7塊11.如圖,有一塊直角三角形余料ABC,∠BAC=90°,D是AC的中點,現(xiàn)從中切出一條矩形紙條DEFG,其中E,F在BC上,點G在AB上,若BF=4.5cm,CE=2cm,則紙條GD的長為()A.3cm B.cm C.cm D.cm12.下列事件是必然事件的是()A.半徑為2的圓的周長是2 B.三角形的外角和等于360°C.男生的身高一定比女生高 D.同旁內角互補二、填空題(每題4分,共24分)13.如圖,矩形對角線交于點為線段上一點,以點為圓心,為半徑畫圓與相切于的中點交于點,若,則圖中陰影部分面積為________________.14.如圖,以點O為位似中心,將四邊形ABCD按1:2放大得到四邊形A′B′C′D′,則四邊形ABCD與四邊形A′B′C′D′的面積比是_____.15.二次函數(shù)y=ax1+bx+c(a≠0)的部分圖象如圖所示,圖象過點(﹣1,0),對稱軸為直線x=1,下列結論:①4a+b=0;②9a+c>3b;③8a+7b+1c>0;④若點A(﹣3,y1)、點B(,y1)、點C(,y3)在該函數(shù)圖象上,則y1<y3<y1;⑤若方程a(x+1)(x﹣5)=﹣3的兩根為x1和x1,且x1<x1,則x1<﹣1<5<x1.其中正確的結論有_______個.16.如圖,直線與雙曲線(k≠0)相交于A(﹣1,)、B兩點,在y軸上找一點P,當PA+PB的值最小時,點P的坐標為_________.17.如圖,小明同學用自制的直角三角形紙板DEF測量樹AB的高度,他調整自己的位置,使斜邊DF保持水平,并且邊DE與點B在同一直線上.已知紙板的兩條直角邊DE=40cm,EF=20cm,測得邊DF離地面的高度AC=1.5m,CD=10m,則AB=_____m.18.兩個相似三角形的面積比為,其中較大的三角形的周長為,則較小的三角形的周長為__________.三、解答題(共78分)19.(8分)如圖,已知拋物線y=ax2+bx+c(a≠0)的對稱軸為直線x=﹣1,求拋物線經(jīng)過A(1,0),C(0,3)兩點,與x軸交于A、B兩點.(1)若直線y=mx+n經(jīng)過B、C兩點,求直線BC和拋物線的解析式;(2)在該拋物線的對稱軸x=﹣1上找一點M,使點M到點A的距離與到點C的距離之和最小,求出點M的坐標;(3)設點P為該拋物線的對稱軸x=﹣1上的一個動點,直接寫出使△BPC為直角三角形的點P的坐標.(提示:若平面直角坐標系內有兩點P(x1,y1)、Q(x2,y2),則線段PQ的長度PQ=).20.(8分)在平面直角坐標系中,拋物線經(jīng)過點,.(1)求這條拋物線所對應的函數(shù)表達式.(2)求隨的增大而減小時的取值范圍.21.(8分)如圖,在平面直角坐標系中,點的坐標為,點在第一象限,,點是上一點,,.(1)求證:;(2)求的值.22.(10分)某體育老師統(tǒng)計了七年級甲、乙兩個班女生的身高,并繪制了以下不完整的統(tǒng)計圖.請根據(jù)圖中信息,解決下列問題:(1)兩個班共有女生多少人?(2)將頻數(shù)分布直方圖補充完整;(3)求扇形統(tǒng)計圖中部分所對應的扇形圓心角度數(shù);(4)身高在的5人中,甲班有3人,乙班有2人,現(xiàn)從中隨機抽取兩人補充到學校國旗隊.請用列表法或畫樹狀圖法,求這兩人來自同一班級的概率.23.(10分)如圖,已知AB是⊙O的直徑,點C、D在⊙O上,點E在⊙O外,∠EAC=∠D=60°.(1)求∠ABC的度數(shù);(2)求證:AE是⊙O的切線;(3)當BC=4時,求劣弧AC的長.24.(10分)已知在平面直角坐標系中,拋物線與x軸相交于點A,B,與y軸相交于點C,直線y=x+4經(jīng)過A,C兩點,(1)求拋物線的表達式;(2)如果點P,Q在拋物線上(P點在對稱軸左邊),且PQ∥AO,PQ=2AO,求P,Q的坐標;(3)動點M在直線y=x+4上,且△ABC與△COM相似,求點M的坐標.25.(12分)解方程:3x2﹣4x+1=1.(用配方法解)26.某商店代銷一批季節(jié)性服裝,每套代銷成本40元,第一個月每套銷售定價為52元時,可售出180套;應市場變化調整第一個月的銷售價,預計銷售定價每增加1元,銷售量將減少10套.(1)若設第二個月的銷售定價每套增加x元,填寫下表.時間第一個月第二個月每套銷售定價(元)銷售量(套)(2)若商店預計要在這兩個月的代銷中獲利4160元,則第二個月銷售定價每套多少;(3)求當4≤x≤6時第二個月銷售利潤的最大值.

參考答案一、選擇題(每題4分,共48分)1、B【分析】根據(jù)一元二次方程的定義可得:|m|=1,且m+1≠0,再解即可.【詳解】解:由題意得:|m|=1,且m+1≠0,

解得:m=1.

故選:B.【點睛】此題主要考查了一元二次方程的定義,關鍵是掌握“未知數(shù)的最高次數(shù)是1”;“二次項的系數(shù)不等于0”.2、C【分析】根據(jù)弦、弧、等弧的定義即可求解.【詳解】解:①直徑是圓中最長的弦,真命題;

②在等圓或同圓中,長度相等的兩條弧是等弧,假命題;

③半徑相等的兩個圓是等圓,真命題;④半徑是圓心與圓上一點之間的線段,不是弧,半圓包括它所對的直徑,真命題.

故選:C.【點睛】本題考查了圓的認識:掌握與圓有關的概念(弦、直徑、半徑、弧、半圓、優(yōu)弧、劣弧、等圓、等弧等).3、A【解析】由題意可知,不透明的袋子中總共有2個白球,從袋子中一次摸出3個球都是白球是不可能事件,故選B.4、A【解析】根據(jù)三角函數(shù)定義可得AD=AC?sin45°,從而可得AD的長,再利用正切定義可得BD的長.【詳解】∵AC=6,∠C=45°∴AD=AC?sin45°=6×=6,∵tan∠ABC=3,∴=3,∴BD==2,故選A.【點睛】本題主要考查解直角三角形,三角函數(shù)的知識,熟記知識點是解題的關鍵.5、B【分析】根據(jù)旋轉的性質可得:△PBC≌△P′BA,故∠PBC=∠P′BA,即可求解.【詳解】由已知得△PBC≌△P′BA,所以∠PBC=∠P′BA,所以∠PBP′=∠P′BA+∠PBA,=∠PBC+∠PBA,=∠ABC,=60°.故選:B.【點睛】本題考查旋轉的性質.旋轉變化前后,對應線段、對應角分別相等,圖形的大小、形狀都不改變.6、A【解析】直接利用銳角三角函數(shù)關系得出sinB的值.【詳解】∵在Rt△ABC中,∠ACB=90°,AC=3,AB=5,∴sinB=故選A.【點睛】此題主要考查了銳角三角函數(shù)關系,正確把握定義是解題關鍵.7、A【分析】根據(jù)題意,先求出點A、B、C的坐標,然后根據(jù)三角形的面積公式,即可求出答案.【詳解】解:∵拋物線與軸交于點,∴令,則,解得:,,∴點A為(1,0),點B為(,0),令,則,∴點C的坐標為:(0,);∴AB=4,OC=3,∴的面積是:=;故選:A.【點睛】本題考查了二次函數(shù)與坐標軸的交點,解題的關鍵是熟練掌握二次函數(shù)的性質,求出拋物線與坐標軸的交點.8、D【分析】將a的值代入函數(shù)表達式,根據(jù)二次函數(shù)的圖象與性質可判斷A、B,將x=1代入函數(shù)表達式可判斷C,當a=0時,y=-4x是一次函數(shù),與x軸只有一個交點,可判斷D錯誤.【詳解】當時,,∴當時,函數(shù)取得最大值5,故A正確;當時,,∴函數(shù)圖象開口向上,對稱軸為,∴當時,y隨x的增大而增大,故B正確;當x=1時,,∴無論a為何值,函數(shù)圖象一定經(jīng)過(1,-4),故C正確;當a=0時,y=-4x,此時函數(shù)為一次函數(shù),與x軸只有一個交點,故D錯誤;故選D.【點睛】本題考查了二次函數(shù)的圖象與性質,以及一次函數(shù)與x軸的交點問題,熟練掌握二次函數(shù)的性質是解題的關鍵.9、D【分析】找到最簡公分母,去分母后得到關于x的一元二次方程,求解后,再檢驗是否有增根問題可解.【詳解】解:去分母得2x﹣(x2﹣4)=x﹣2,整理得x2﹣x﹣6=0,解得x1=1,x2=-2,檢驗:當x=1時,x2﹣4≠0,所以x=1是原方程的解;當x=-2時,x2﹣4=0,所以x=2是原方程的增根,所以原方程的解為x=1.故選:D.【點睛】本題考查了可化為一元二次方程的分式方程的解法,解答完成后要對方程的根進行檢驗,判定是否有增根產(chǎn)生.10、C【分析】易得這個幾何體共有3層,由俯視圖可知第一層正方體的個數(shù)為4,由主視圖可知第二層最少為2塊,最多的正方體的個數(shù)為3塊,第三層只有一塊,相加即可.【詳解】由主視圖可得:這個幾何體共有3層,由俯視圖可知第一層正方體的個數(shù)為4,由主視圖可知第二層最少為2塊,最多的正方體的個數(shù)為3塊,第三層只有一塊,故:最多為3+4+1=8個最少為2+4+1=7個故選C【點睛】本題考查由三視圖判斷幾何體,熟練掌握立體圖形的三視圖是解題關鍵.11、C【詳解】∵四邊形DEFG是矩形,∴GD∥EF,GD=EF,∵D是AC的中點,∴GD是△ABC的中位線,∴,∴,解得:GD=.故選D.12、B【分析】根據(jù)必然事件的概念(必然事件指在一定條件下一定發(fā)生的事件),可判斷出正確答案.【詳解】解:A、半徑為2的圓的周長是4,不是必然事件;B、三角形的外角和等于360°,是必然事件;C、男生的身高一定比女生高,不是必然事件;D、同旁內角互補,不是必然事件;故選B.【點睛】本題考查了必然事件的定義,解決本題需要正確理解必然事件、不可能事件、隨機事件的概念.必然事件指在一定條件下一定發(fā)生的事件.不可能事件是指在一定條件下,一定不發(fā)生的事件.不確定事件即隨機事件是指在一定條件下,可能發(fā)生也可能不發(fā)生的事件.二、填空題(每題4分,共24分)13、【分析】連接BG,根據(jù)切線性質及G為中點可知BG垂直平分AO,再結合矩形性質可證明為等邊三角形,從而得到∠ABD=60°,∠ADB=30°,再利用30°角直角三角形的三邊關系求出AB,然后求出和扇形BEF的面積,兩者相減即可得到陰影部分面積.【詳解】連接BG,由題可知BG⊥OA,∵G為OA中點,∴BG垂直平分OA,∴AB=OB,∵四邊形ABCD為矩形,∴OA=OB=OD=OC,∠BAD=90°,∴AB=OB=OA,即為等邊三角形,∴∠ABO=∠BAO=60°,∴∠ADB=30°,∠ABG=30°,在中,∠ADB=30°,AD=,∴AB=OA=2,在中,∠ABG=30°,AB=2,∴AG=1,BG=,∴,又∵,∴.故答案為:.【點睛】本題考查了扇形面積的計算,矩形的性質,含30°角的直角三角形的三邊關系以及等邊三角形的判定與性質,較為綜合,需熟練掌握各知識點.14、1:1.【解析】根據(jù)位似變換的性質定義得到四邊形ABCD與四邊形A′B′C′D′相似,根據(jù)相似多邊形的性質計算即可.【詳解】解:以點O為位似中心,將四邊形ABCD按1:2放大得到四邊形A′B′C′D′,則四邊形ABCD與四邊形A′B′C′D′相似,相似比為1:2,∴四邊形ABCD與四邊形A′B′C′D′的面積比是1:1,故答案為:1:1.【點睛】本題考查的是位似變換,如果兩個圖形不僅是相似圖形,而且對應頂點的連線相交于一點,對應邊互相平行,那么這樣的兩個圖形叫做位似圖形.15、2【分析】根據(jù)二次函數(shù)的圖象與系數(shù)的關系即可求出答案.【詳解】①由對稱軸可知:x=?=1,∴4a+b=0,故①正確;②由圖可知:x=?2時,y<0,∴9a?2b+c<0,即9a+c<2b,故②錯誤;③令x=?1,y=0,∴a?b+c=0,∵b=?4a,∴c=?5a,∴8a+7b+1c=8a?18a?10a=?20a由開口可知:a<0,∴8a+7b+1c=?20a>0,故③正確;④點A(﹣2,y1)、點B(,y1)、點C(,y2)在該函數(shù)圖象上,由拋物線的對稱性可知:點C關于直線x=1的對稱點為(,y2),∵?2<<,∴y1<y1<y2故④錯誤;⑤由題意可知:(?1,0)關于直線x=1的對稱點為(5,0),∴二次函數(shù)y=ax1+bx+c=a(x+1)(x?5),令y=?2,∴直線y=?2與拋物線y=a(x+1)(x?5)的交點的橫坐標分別為x1,x1,∴x1<?l<5<x1故⑤正確;故正確的結論有2個答案為:2.【點睛】本題考查二次函數(shù)的圖象,解題的關鍵是正確理解二次函數(shù)的圖象與系數(shù)之間的關系,本題屬于中等題型.16、(0,).【解析】試題分析:把點A坐標代入y=x+4得a=3,即A(﹣1,3),把點A坐標代入雙曲線的解析式得3=﹣k,即k=﹣3,聯(lián)立兩函數(shù)解析式得:,解得:,,即點B坐標為:(﹣3,1),作出點A關于y軸的對稱點C,連接BC,與y軸的交點即為點P,使得PA+PB的值最小,則點C坐標為:(1,3),設直線BC的解析式為:y=ax+b,把B、C的坐標代入得:,解得:,所以函數(shù)解析式為:y=x+,則與y軸的交點為:(0,).考點:反比例函數(shù)與一次函數(shù)的交點問題;軸對稱-最短路線問題.17、6.5【分析】利用直角三角形DEF和直角三角形BCD相似求得BC的長后加上AC的長即可求得樹AB的高.【詳解】∵∠DEF=∠BCD=90°,∠D=∠D,∴△DEF∽△DCB,∴,∵DE=40cm=0.4m,EF=20cm=0.2m,CD=10m,∴,解得:BC=5(m),∵AC=1.5m,∴AB=AC+BC=1.5+5=6.5(m),故答案為:6.5【點睛】本題考查相似三角形的應用,如果兩個三角形的兩個角與另一個三角形的兩個角對應相等,那么這兩個三角形相似;熟練掌握相似三角形的判定定理是解題關鍵.18、1【分析】根據(jù)面積之比得出相似比,然后利用周長之比等于相似比即可得出答案.【詳解】∵兩個相似三角形的面積比為∴兩個相似三角形的相似比為∴兩個相似三角形的周長也比為∵較大的三角形的周長為∴較小的三角形的周長為故答案為:1.【點睛】本題主要考查相似三角形的性質,掌握相似三角形的性質是解題的關鍵.三、解答題(共78分)19、(1)y=x+3;y=﹣x2﹣2x+3;(2)M的坐標是(﹣1,2);(3)P的坐標是(﹣1,)或(﹣1,)或(﹣1,4)或(﹣1,﹣2).【分析】(1)用待定系數(shù)法即可求出直線BC和拋物線的解析式;(2)設直線BC與對稱軸x=?1的交點為M,則此時MA+MC的值最小.把x=?1代入直線y=x+3得y的值,即可求出點M坐標;(3)設P(?1,t),又因為B(?3,0),C(0,3),所以可得BC2=18,PB2=(?1+3)2+t2=4+t2,PC2=(?1)2+(t?3)2=t2?6t+10,再分三種情況分別討論求出符合題意t值即可求出點P的坐標.【詳解】(1)A(1,0)關于x=﹣1的對稱點是(﹣3,0),則B的坐標是(﹣3,0)根據(jù)題意得:解得則直線的解析式是y=x+3;根據(jù)題意得:解得:則拋物線的解析式是y=﹣x2﹣2x+3(2)設直線BC與對稱軸x=?1的交點為M,則此時MA+MC的值最?。褁=?1代入直線y=x+3得,y=?1+3=2,∴M(?1,2),即當點M到點A的距離與到點C的距離之和最小時M的坐標為(?1,2);(3)如圖,設P(?1,t),又∵B(?3,0),C(0,3),∴BC2=18,PB2=(?1+3)2+t2=4+t2,PC2=(?1)2+(t?3)2=t2?6t+10,①若點B為直角頂點,則BC2+PB2=PC2即:18+4+t2=t2?6t+10解之得:t=?2;②若點C為直角頂點,則BC2+PC2=PB2即:18+t2?6t+10=4+t2解之得:t=4,③若點P為直角頂點,則PB2+PC2=BC2即:4+t2+t2?6t+10=18解之得:t1=,t2=;∴P的坐標是(﹣1,)或(﹣1,)或(﹣1,4)或(﹣1,﹣2).【點睛】本題是二次函數(shù)的綜合題,考查了二次函數(shù)的圖象與性質,待定系數(shù)法求函數(shù)的解析式,利用軸對稱性質確定線段的最小長度,兩點間的距離公式的運用,直角三角形的性質等知識點,熟練掌握二次函數(shù)的性質是解題的關鍵.20、(1),(2)隨的增大而減小時.【解析】(1)把,代入解析式,解方程組求出a、b的值即可;(2)根據(jù)(1)中所得解析式可得對稱軸,a>0,在對稱軸左側y隨的增大而減小根據(jù)二次函數(shù)的性質即可得答案.【詳解】(1)∵拋物線經(jīng)過點,.∴解得∴這條拋物線所對應的函數(shù)表達式為.(2)∵拋物線的對稱軸為直線,∵,∴圖象開口向上,∴y隨的增大而減小時x<1.【點睛】本題考查待定系數(shù)法確定二次函數(shù)解析式及二次函數(shù)的性質,a>0,開口向上,在對稱軸左側y隨的增大而減小,a<0,開口向下,在對稱軸右側y隨的增大而減小,熟練掌握二次函數(shù)的圖像和性質是解題關鍵.21、(1)證明見解析;(2)cos∠ABO=【分析】(1)過點作點,在中,利用銳角三角函數(shù)的知識求出BD的長,再用勾股定理求出OD、AB、BC的長,所以AB=BC,從而得到∠ACB=∠BAO,然后根據(jù)兩角分別相等的兩個三角形相似解答即可;(2)在中求出∠BAO的余弦值,根據(jù)∠ABO=∠BAO可得答案.【詳解】(1)在平面直角坐標系中,點的坐標為,,,,∠OAB=∠ABO,過點作點,則,在中,,,,,在中,,,∴CD=6-2=4,∴BC=,∴AB=BC,∴∠ACB=∠BAO,∴∠ACB=∠ABO=∠BAO,又∵∠BAC=∠OAB,(兩角分別相等的兩個三角形相似);(2)在中,,∵∠ABO=∠BAO,,即的值為.【點睛】本題考查了坐標與圖形的性質,解直角三角形,等腰三角形的判定與性質,勾股定理等知識,正確作出輔助線是解答本題的關鍵.22、(1)50;(2)詳見解析;(3);(4)【分析】(1)根據(jù)D的人數(shù)除以所占的百分比即可的總人數(shù);(2)根據(jù)C的百分比乘以總人數(shù),可得C的人數(shù),再根據(jù)總人數(shù)減去A、B、C、D、F,便可計算的E的人數(shù),分別在直方圖上表示即可.(3)根據(jù)直方圖上E的人數(shù)比總人數(shù)即可求得的E百分比,再計算出圓心角即可.(4)畫樹狀圖統(tǒng)計總數(shù)和來自同一班級的情況,再計算概率即可.【詳解】解:(1)總人數(shù)為人,答:兩個班共有女生50人;(2)C部分對應的人數(shù)為人,部分所對應的人數(shù)為;頻數(shù)分布直方圖補充如下:(3)扇形統(tǒng)計圖中部分所對應的扇形圓心角度數(shù)為;(4)畫樹狀圖:共有20種等可能的結果數(shù),其中這兩人來自同一班級的情況占8種,所以這兩人來自同一班級的概率是.【點睛】本題是一道數(shù)據(jù)統(tǒng)計的綜合性題目,難度不大,這類題目,往往容易得分,應當熟練的掌握.23、(1)60°;(2)證明略;(3)【分析】(1)根據(jù)∠ABC與∠D都是劣弧AC所對的圓周角,利用圓周角定理可證出∠ABC=∠D=60°;

(2)根據(jù)AB是⊙O的直徑,利用直徑所對的圓周角是直角得到∠ACB=90°,結合∠ABC=60°求得∠BAC=30°,從而推出∠BAE=90°,即OA⊥AE,可得AE是⊙O的切線;

(3)連結OC,證出△OBC是等邊三角形,算出∠BOC=60°且⊙O的半徑等于4,可得劣弧AC所對的圓心角∠AOC=120°,再由弧長公式加以計算,可得劣弧AC的長.【詳解】(1)∵∠ABC與∠D都是弧AC所對的圓周角,∴∠ABC=∠D=60°;(2)∵AB是⊙O的直徑,∴∠ACB=90°.∴∠BAC=30°,∴∠BAE=∠BAC+∠EAC=30°+60°=90°,即BA⊥AE,∴AE是⊙O的切線;(3)如圖,連接OC,∵OB=OC,∠ABC=60°,∴△OBC是等邊三角形,∴OB=BC=4,∠BOC=60°,∴∠AOC=120°,∴劣弧AC的長為==.【點睛】本題考查了切線長定理及弧長公式,熟練掌握定理及公式是解題的關鍵.24、(1)(2)P點坐標(﹣5,﹣),Q點坐標(3,﹣)(3)M點的坐標為(﹣,),(﹣3,1)【解析】試題分析:(1)根據(jù)自變量與函數(shù)值的對應關系,可得A、C點坐標,根據(jù)待定系數(shù)法,可得函數(shù)解析式;(2)根據(jù)平行于x軸的直線與拋物線的交點關于對稱軸對稱,可得P、Q關于直線x=﹣1對稱,根據(jù)PQ的長,可得P點的橫坐標,Q點的橫坐標,根據(jù)自變量與函數(shù)值的對應關系,可得答案;(3)根據(jù)兩組對邊對應成比例且夾角相等的兩個三角形相似,可得CM的長,根據(jù)等腰直角三角形的性質,可得MH的長,再根據(jù)自變量與函數(shù)值的對應關系,可得答案.試題解析:(1)當x=0時,y=4,即C(0,4),當y=0時,x+4=0,解得x=﹣4,即A(﹣4,0),將A、C點坐標代入函數(shù)解析式,得,解得,拋物線的表達式為;(2)PQ=2AO=8,又PQ∥AO,即P、Q關于對稱軸x=﹣1對稱,PQ=8,﹣1﹣4=﹣5,當x=﹣5

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論