版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
2022-2023學(xué)年江蘇省徐州市普通高校對(duì)口單招高等數(shù)學(xué)一自考測(cè)試卷(含答案)學(xué)校:________班級(jí):________姓名:________考號(hào):________
一、單選題(50題)1.微分方程y’-4y=0的特征根為()A.0,4B.-2,2C.-2,4D.2,4
2.下列各式中正確的是()。
A.
B.
C.
D.
3.設(shè)Y=x2-2x+a,貝0點(diǎn)x=1()。A.為y的極大值點(diǎn)B.為y的極小值點(diǎn)C.不為y的極值點(diǎn)D.是否為y的極值點(diǎn)與a有關(guān)
4.函數(shù)y=ex+e-x的單調(diào)增加區(qū)間是
A.(-∞,+∞)B.(-∞,0]C.(-1,1)D.[0,+∞)
5.
6.微分方程y''-2y=ex的特解形式應(yīng)設(shè)為()。A.y*=Aex
B.y*=Axex
C.y*=2ex
D.y*=ex
7.()A.A.
B.
C.
D.
8.A.A.條件收斂B.絕對(duì)收斂C.收斂性與k有關(guān)D.發(fā)散
9.
10.
11.設(shè)x=1為y=x3-ax的極小值點(diǎn),則a等于().
A.3
B.
C.1
D.1/3
12.()A.A.1B.2C.1/2D.-1
13.
14.設(shè)函數(shù)f(x)在(0,1)內(nèi)可導(dǎo),f'(x)>0,則f(x)在(0,1)內(nèi)()A.A.單調(diào)減少B.單調(diào)增加C.為常量D.不為常量,也不單調(diào)
15.A.A.2xy3
B.2xy3-1
C.2xy3-siny
D.2xy3-siny-1
16.函數(shù)z=x2-xy+y2+9x-6y+20有()
A.極大值f(4,1)=63B.極大值f(0,0)=20C.極大值f(-4,1)=-1D.極小值f(-4,1)=-1
17.
等于().
18.
19.設(shè)y=e-3x,則dy=A.e-3xdx
B.-e-3xdx
C.-3e-3xdx
D.3e-3xdx
20.
21.
22.設(shè)f(x)=e-2x,則f'(x)=()。A.-e-2x
B.e-2x
C.-(1/2)e-2x
D.-2e-2x
23.
A.
B.
C.
D.
24.
25.微分方程y'+y=0的通解為()。A.y=ex
B.y=e-x
C.y=Cex
D.y=Ce-x
26.方程y'-3y'+2y=xe2x的待定特解y*應(yīng)取().A.A.Axe2x
B.(Ax+B)e2x
C.Ax2e2x
D.x(Ax+B)e2x
27.管理幅度是指一個(gè)主管能夠直接、有效地指揮下屬成員的數(shù)目,經(jīng)研究發(fā)現(xiàn),高層管理人員的管理幅度通常以()較為合適。
A.4~8人B.10~15人C.15~20人D.10~20人
28.某技術(shù)專家,原來(lái)從事專業(yè)工作,業(yè)務(wù)精湛,績(jī)效顯著,近來(lái)被提拔到所在科室負(fù)責(zé)人的崗位。隨著工作性質(zhì)的轉(zhuǎn)變,他今后應(yīng)當(dāng)注意把自己的工作重點(diǎn)調(diào)整到()
A.放棄技術(shù)工作,全力以赴,抓好管理和領(lǐng)導(dǎo)工作
B.重點(diǎn)仍以技術(shù)工作為主,以自身為榜樣帶動(dòng)下級(jí)
C.以抓管理工作為主,同時(shí)參與部分技術(shù)工作,以增強(qiáng)與下級(jí)的溝通和了解
D.在抓好技術(shù)工作的同時(shí),做好管理工作
29.A.
B.0
C.
D.
30.=()。A.
B.
C.
D.
31.設(shè)z=ln(x2+y),則等于()。A.
B.
C.
D.
32.
33.設(shè)等于()A.A.-1B.1C.-cos1D.1-cos1
34.
35.
36.
37.設(shè)y=cos4x,則dy=()。A.
B.
C.
D.
38.A.0B.1C.2D.任意值
39.曲線y=x+(1/x)的凹區(qū)間是
A.(-∞,-1)B.(-1,+∞)C.(-∞,0)D.(0,+∞)
40.
41.
42.
43.過(guò)點(diǎn)(1,0,0),(0,1,0),(0,0,1)的平面方程為().
A.x+y+z=1
B.2x+y+z=1
C.x+2y+z=1
D.x+y+2z=1
44.個(gè)人試圖在組織或社會(huì)的權(quán)威之外建立道德準(zhǔn)則是發(fā)生在()
A.前慣例層次B.慣例層次C.原則層次D.以上都不是
45.下列命題中正確的為
A.若x0為f(x)的極值點(diǎn),則必有f'(x0)=0
B.若f'(x)=0,則點(diǎn)x0必為f(x)的極值點(diǎn)
C.若f'(x0)≠0,則點(diǎn)x0必定不為f(x)的極值點(diǎn)
D.若f(x)在點(diǎn)x0處可導(dǎo),且點(diǎn)x0為f(x)的極值點(diǎn),則必有f'(x0)=0
46.
47.
48.A.
B.x2
C.2x
D.
49.級(jí)數(shù)()。A.絕對(duì)收斂B.條件收斂C.發(fā)散D.收斂性與k有關(guān)
50.
二、填空題(20題)51.
52.
53.
54.
55.
56.微分方程y'=0的通解為__________。
57.58.59.
60.微分方程xdx+ydy=0的通解是__________。
61.
62.
63.
64.
65.
66.冪級(jí)數(shù)的收斂半徑為______.
67.冪級(jí)數(shù)的收斂半徑為______.68.設(shè)y=sin2x,則y'______.69.
70.
三、計(jì)算題(20題)71.
72.研究級(jí)數(shù)的收斂性(即何時(shí)絕對(duì)收斂,何時(shí)條件收斂,何時(shí)發(fā)散,其中常數(shù)a>0.
73.求微分方程y"-4y'+4y=e-2x的通解.
74.已知某商品市場(chǎng)需求規(guī)律為Q=100e-0.25p,當(dāng)p=10時(shí),若價(jià)格上漲1%,需求量增(減)百分之幾?
75.求曲線在點(diǎn)(1,3)處的切線方程.76.
77.78.證明:79.求函數(shù)f(x)=x3-3x+1的單調(diào)區(qū)間和極值.80.當(dāng)x一0時(shí)f(x)與sin2x是等價(jià)無(wú)窮小量,則81.
82.求函數(shù)一的單調(diào)區(qū)間、極值及其曲線的凹凸區(qū)間和拐點(diǎn).83.將f(x)=e-2X展開為x的冪級(jí)數(shù).
84.
85.86.設(shè)平面薄板所占Oxy平面上的區(qū)域D為1≤x2+y2≤4,x≥0,y≥0,其面密度
u(x,y)=2+y2,求該薄板的質(zhì)量m.87.求微分方程的通解.88.89.設(shè)拋物線Y=1-x2與x軸的交點(diǎn)為A、B,在拋物線與x軸所圍成的平面區(qū)域內(nèi),以線段AB為下底作內(nèi)接等腰梯形ABCD(如圖2—1所示).設(shè)梯形上底CD長(zhǎng)為2x,面積為
S(x).
(1)寫出S(x)的表達(dá)式;
(2)求S(x)的最大值.
90.求函數(shù)y=x-lnx的單調(diào)區(qū)間,并求該曲線在點(diǎn)(1,1)處的切線l的方程.四、解答題(10題)91.
92.
93.
94.
95.
96.函數(shù)y=y(x)由方程ey=sin(x+y)確定,求dy.
97.的面積A。98.99.計(jì)算
100.
五、高等數(shù)學(xué)(0題)101.求
的和函數(shù),并求
一的和。
六、解答題(0題)102.
參考答案
1.B由r2-4=0,r1=2,r2=-2,知y"-4y=0的特征根為2,-2,故選B.
2.B
3.B本題考查的知識(shí)點(diǎn)為一元函數(shù)的極值。求解的一般步驟為:先求出函數(shù)的一階導(dǎo)數(shù),令偏導(dǎo)數(shù)等于零,確定函數(shù)的駐點(diǎn).再依極值的充分條件來(lái)判定所求駐點(diǎn)是否為極值點(diǎn)。由于y=x2-2x+a,可由y'=2x-2=0,解得y有唯一駐點(diǎn)x=1.又由于y"=2,可得知y"|x=1=2>0。由極值的充分條件可知x=1為y的極小值點(diǎn),故應(yīng)選B。如果利用配方法,可得y=(x-1)2+a-1≥a-1,且y|x=1=a-1,由極值的定義可知x=1為y的極小值點(diǎn),因此選B。
4.D考查了函數(shù)的單調(diào)區(qū)間的知識(shí)點(diǎn).
y=ex+e-x,則y'=ex-e-x,當(dāng)x>0時(shí),y'>0,所以y在區(qū)間[0,+∞)上單調(diào)遞增。
5.B
6.A由方程知,其特征方程為,r2-2=0,有兩個(gè)特征根r=±.又自由項(xiàng)f(x)=ex,λ=1不是特征根,故特解y*可設(shè)為Aex.
7.A
8.A本題考杏的知識(shí)點(diǎn)為級(jí)數(shù)的絕對(duì)收斂與條件收斂.
9.A
10.A
11.A解析:本題考查的知識(shí)點(diǎn)為判定極值的必要條件.
由于y=x3-ax,y'=3x2-a,令y'=0,可得
由于x=1為y的極小值點(diǎn),因此y'|x=1=0,從而知
故應(yīng)選A.
12.C由于f'(2)=1,則
13.B
14.B由于f'(x)>0,可知f(x)在(0,1)內(nèi)單調(diào)增加.因此選B.
15.A
16.D
17.D解析:本題考查的知識(shí)點(diǎn)為牛頓一萊布尼茨公式和定積分的換元法.
因此選D.
18.B
19.C
20.C
21.D
22.D
23.B本題考查的知識(shí)點(diǎn)為交換二次積分次序。由所給二次積分可知積分區(qū)域D可以表示為1≤y≤2,y≤x≤2,交換積分次序后,D可以表示為1≤x≤2,1≤y≤x,故應(yīng)選B。
24.B
25.D可以將方程認(rèn)作可分離變量方程;也可以將方程認(rèn)作一階線性微分方程;還可以仿二階線性常系數(shù)齊次微分方程,并作為特例求解。解法1將方程認(rèn)作可分離變量方程。分離變量
兩端分別積分
或y=Ce-x解法2將方程認(rèn)作一階線性微分方程.由通解公式可得解法3認(rèn)作二階常系數(shù)線性齊次微分方程特例求解:特征方程為r+1=0,特征根為r=-1,方程通解為y=Ce-x。
26.D本題考查的知識(shí)點(diǎn)為二階常系數(shù)線性非齊次微分方程特解y*的取法:
若自由項(xiàng)f(x)=Pn(x)eαx,當(dāng)α不為特征根時(shí),可設(shè)特解為
y*=Qn(x)eαx,
Qn(x)為x的待定n次多項(xiàng)式.
當(dāng)α為單特征根時(shí),可設(shè)特解為
y*=xQn(x)eαx,
當(dāng)α為二重特征根時(shí),可設(shè)特解為
y*=x2Qn(x)eαx.
所給方程對(duì)應(yīng)齊次方程的特征方程為
r2-3r+2=0.
特征根為r1=1,r2=2.
自由項(xiàng)f(x)=xe2x,相當(dāng)于α=2為單特征根.又因?yàn)镻n(x)為一次式,因此應(yīng)選D.
27.A解析:高層管理人員的管理幅度通常以4~8人較為合適。
28.C
29.A
30.D
31.A本題考查的知識(shí)點(diǎn)為偏導(dǎo)數(shù)的計(jì)算。由于故知應(yīng)選A。
32.A
33.B本題考查的知識(shí)點(diǎn)為可變上限的積分.
由于,從而知
可知應(yīng)選B.
34.D
35.B
36.C解析:
37.B
38.B
39.D解析:
40.B解析:
41.B
42.A
43.A設(shè)所求平面方程為.由于點(diǎn)(1,0,0),(0,1,0),(0,0,1)都在平面上,將它們的坐標(biāo)分別代入所設(shè)平面方程,可得方程組
故選A.
44.C解析:處于原則層次的個(gè)人試圖在組織或社會(huì)的權(quán)威之外建立道德準(zhǔn)則。
45.D解析:由極值的必要條件知D正確。
y=|x|在x=0處取得極值,但不可導(dǎo),知A與C不正確。
y=x3在x=0處導(dǎo)數(shù)為0,但x0=0不為它的極值點(diǎn),可知B不正確。因此選D。
46.A
47.D解析:
48.C
49.A本題考查的知識(shí)點(diǎn)為級(jí)數(shù)的絕對(duì)收斂與條件收斂。
由于的p級(jí)數(shù),可知為收斂級(jí)數(shù)。
可知收斂,所給級(jí)數(shù)絕對(duì)收斂,故應(yīng)選A。
50.C
51.
52.
53.
54.2xy(x+y)+3
55.In2
56.y=C
57.
58.59.0
本題考查的知識(shí)點(diǎn)為無(wú)窮小量的性質(zhì).
60.x2+y2=C
61.0
62.
63.
64.
65.本題考查的知識(shí)點(diǎn)為定積分的換元法.
66.367.0本題考查的知識(shí)點(diǎn)為冪級(jí)數(shù)的收斂半徑.
所給冪級(jí)數(shù)為不缺項(xiàng)情形
因此收斂半徑為0.68.2sinxcosx本題考查的知識(shí)點(diǎn)為復(fù)合函數(shù)導(dǎo)數(shù)運(yùn)算.
69.
70.-ln|x-1|+C
71.
72.
73.解:原方程對(duì)應(yīng)的齊次方程為y"-4y'+4y=0,
74.需求規(guī)律為Q=100ep-2.25p
∴當(dāng)P=10時(shí)價(jià)格上漲1%需求量減少2.5%需求規(guī)律為Q=100ep-2.25p,
∴當(dāng)P=10時(shí),價(jià)格上漲1%需求量減少2.5%75.曲線方程為,點(diǎn)(1,3)在曲線上.
因此所求曲線方程為或?qū)憺?x+y-5=0.
如果函數(shù)y=f(x)在點(diǎn)x0處的導(dǎo)數(shù)f′(x0)存
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 青島山東青島市自然資源和規(guī)劃局所屬事業(yè)單位招聘3人筆試歷年參考題庫(kù)附帶答案詳解
- 鄂爾多斯2025年內(nèi)蒙古鄂爾多斯市衛(wèi)生健康委員會(huì)所屬事業(yè)單位引進(jìn)高層次人才12人筆試歷年參考題庫(kù)附帶答案詳解
- 襄陽(yáng)2025年湖北襄陽(yáng)市婦幼保健院引進(jìn)急需專業(yè)技術(shù)人才10人筆試歷年參考題庫(kù)附帶答案詳解
- 職業(yè)傳染病防控中的信息共享機(jī)制
- 玉林2025年廣西北流市選調(diào)新建學(xué)校教師69人筆試歷年參考題庫(kù)附帶答案詳解
- 職業(yè)人群職業(yè)病防治的健康傳播策略
- 泉州2025年福建泉州市公安局招聘輔警52人筆試歷年參考題庫(kù)附帶答案詳解
- 梅州2025年下半年廣東梅州市招聘事業(yè)編制工作人員640人筆試歷年參考題庫(kù)附帶答案詳解
- 揭陽(yáng)廣東揭陽(yáng)市應(yīng)急管理局招聘綜合行政執(zhí)法兼職技術(shù)檢查員5人筆試歷年參考題庫(kù)附帶答案詳解
- 延安2025年陜西延安市志丹縣事業(yè)單位招聘25人筆試歷年參考題庫(kù)附帶答案詳解
- 地理可持續(xù)發(fā)展學(xué)習(xí)教案(2025-2026學(xué)年)
- GB/T 31439.2-2025波形梁鋼護(hù)欄第2部分:三波形梁鋼護(hù)欄
- 2025組織生活會(huì)問(wèn)題清單及整改措施
- 危重癥??谱o(hù)理小組工作總結(jié)
- 百千萬(wàn)工程行動(dòng)方案(3篇)
- 山洪災(zāi)害監(jiān)理工作報(bào)告
- 數(shù)字推理試題及答案下載
- 學(xué)?!暗谝蛔h題”學(xué)習(xí)制度
- 運(yùn)輸管理實(shí)務(wù)(第二版)李佑珍課件第6章 集裝箱多式聯(lián)運(yùn)學(xué)習(xí)資料
- 水泵維修更換申請(qǐng)報(bào)告
- 機(jī)械設(shè)備運(yùn)輸合同
評(píng)論
0/150
提交評(píng)論