版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
2022-2023學(xué)年江西省新余市普通高校對口單招高等數(shù)學(xué)一自考測試卷(含答案)學(xué)校:________班級:________姓名:________考號:________
一、單選題(50題)1.
A.2B.1C.1/2D.0
2.
3.A.e-2
B.e-1
C.e
D.e2
4.A.A.1
B.3
C.
D.0
5.A.A.1
B.
C.m
D.m2
6.函數(shù)在(-3,3)內(nèi)展開成x的冪級數(shù)是()。
A.
B.
C.
D.
7.設(shè)y1、y2是二階常系數(shù)線性齊次方程y"+p1y'+p2y=0的兩個(gè)特解,C1、C2為兩個(gè)任意常數(shù),則下列命題中正確的是A.A.C1y1+C2y2為該方程的通解
B.C1y1+C2y2不可能是該方程的通解
C.C1y1+C2y2為該方程的解
D.C1y1+C2y2不是該方程的解
8.A.A.1
B.1/m2
C.m
D.m2
9.
10.
11.
12.設(shè)y=3-x,則y'=()。A.-3-xln3
B.3-xlnx
C.-3-x-1
D.3-x-1
13.
14.
15.
16.一端固定,一端為彈性支撐的壓桿,如圖所示,其長度系數(shù)的范圍為()。
A.μ<0.7B.μ>2C.0.7<μ<2D.不能確定
17.
18.如圖所示,在乎板和受拉螺栓之間墊上一個(gè)墊圈,可以提高()。
A.螺栓的拉伸強(qiáng)度B.螺栓的剪切強(qiáng)度C.螺栓的擠壓強(qiáng)度D.平板的擠壓強(qiáng)度
19.曲線y=x2+5x+4在點(diǎn)(-1,0)處切線的斜率為()A.A.2B.-2C.3D.-3
20.A.(1/3)x3
B.x2
C.2xD.(1/2)x
21.績效評估的第一個(gè)步驟是()
A.確定特定的績效評估目標(biāo)B.確定考評責(zé)任者C.評價(jià)業(yè)績D.公布考評結(jié)果,交流考評意見
22.設(shè)函數(shù)在x=0處連續(xù),則等于()。A.2B.1/2C.1D.-2
23.A.A.導(dǎo)數(shù)存在,且有f(a)=一1B.導(dǎo)數(shù)一定不存在C.f(a)為極大值D.f(a)為極小值
24.A.exln2
B.e2xln2
C.ex+ln2
D.e2x+ln2
25.
26.
27.
28.
29.()。A.e-2
B.e-2/3
C.e2/3
D.e2
30.
31.設(shè)y=5x,則y'等于().
A.A.
B.
C.
D.
32.
33.設(shè)函數(shù)f(x)在區(qū)間(0,1)內(nèi)可導(dǎo),f'(x)>0,則在(0,1)內(nèi)f(x)().A.單調(diào)增加B.單調(diào)減少C.為常量D.既非單調(diào),也非常量34.設(shè)f(x)為連續(xù)的奇函數(shù),則等于().A.A.2af(x)
B.
C.0
D.f(a)-f(-a)
35.
36.A.A.
B.
C.
D.
37.設(shè)f(0)=0,且存在,則等于().A.A.f'(x)B.f'(0)C.f(0)D.f(x)38.設(shè)f(x)為連續(xù)函數(shù),則(∫f5x)dx)'等于()A.A.
B.5f(x)
C.f(5x)
D.5f(5x)
39.設(shè)函數(shù)y=f(x)二階可導(dǎo),且f(x)<0,f(x)<0,又△y=f(x+△x)-f(x),dy=f(x)△x,則當(dāng)△x>0時(shí),有()A.△y>dy>0
B.△<dy<0
C.dy>Ay>0
D.dy<△y<0
40.
41.
42.
43.交變應(yīng)力的變化特點(diǎn)可用循環(huán)特征r來表示,其公式為()。
A.
B.
C.
D.
44.函數(shù)y=ex+arctanx在區(qū)間[-1,1]上()
A.單調(diào)減少B.單調(diào)增加C.無最大值D.無最小值45.曲線y=lnx-2在點(diǎn)(e,-1)的切線方程為()A.A.
B.
C.
D.
46.
47.A.-1
B.0
C.
D.1
48.
49.設(shè)曲線y=x-ex在點(diǎn)(0,-1)處與直線l相切,則直線l的斜率為().A.A.∞B.1C.0D.-1
50.平面x+y一3z+1=0與平面2x+y+z=0相互關(guān)系是()。
A.斜交B.垂直C.平行D.重合二、填空題(20題)51.52.函數(shù)f(x)=x3-12x的極小值點(diǎn)x=_______.53.54.已知平面π:2x+y-3z+2=0,則過點(diǎn)(0,0,0)且與π垂直的直線方程為______.55.
56.
57.
58.
59.
60.61.62.63.
64.
65.______。66.67.
68.
69.函數(shù)y=x3-2x+1在區(qū)間[1,2]上的最小值為______.70.三、計(jì)算題(20題)71.求函數(shù)f(x)=x3-3x+1的單調(diào)區(qū)間和極值.72.求微分方程的通解.73.求函數(shù)一的單調(diào)區(qū)間、極值及其曲線的凹凸區(qū)間和拐點(diǎn).
74.已知某商品市場需求規(guī)律為Q=100e-0.25p,當(dāng)p=10時(shí),若價(jià)格上漲1%,需求量增(減)百分之幾?
75.設(shè)拋物線Y=1-x2與x軸的交點(diǎn)為A、B,在拋物線與x軸所圍成的平面區(qū)域內(nèi),以線段AB為下底作內(nèi)接等腰梯形ABCD(如圖2—1所示).設(shè)梯形上底CD長為2x,面積為
S(x).
(1)寫出S(x)的表達(dá)式;
(2)求S(x)的最大值.
76.研究級數(shù)的收斂性(即何時(shí)絕對收斂,何時(shí)條件收斂,何時(shí)發(fā)散,其中常數(shù)a>0.77.當(dāng)x一0時(shí)f(x)與sin2x是等價(jià)無窮小量,則78.將f(x)=e-2X展開為x的冪級數(shù).79.
80.
81.
82.證明:83.
84.求函數(shù)y=x-lnx的單調(diào)區(qū)間,并求該曲線在點(diǎn)(1,1)處的切線l的方程.85.86.
87.求曲線在點(diǎn)(1,3)處的切線方程.88.
89.求微分方程y"-4y'+4y=e-2x的通解.
90.設(shè)平面薄板所占Oxy平面上的區(qū)域D為1≤x2+y2≤4,x≥0,y≥0,其面密度
u(x,y)=2+y2,求該薄板的質(zhì)量m.四、解答題(10題)91.
92.
93.94.求,其中D為y=x-4,y2=2x所圍成的區(qū)域。
95.
96.
97.
98.99.求方程y''-2y'+5y=ex的通解.
100.
五、高等數(shù)學(xué)(0題)101.
在t=1處的切線方程_______。
六、解答題(0題)102.
參考答案
1.D本題考查的知識點(diǎn)為重要極限公式與無窮小量的性質(zhì).
2.D解析:
3.D由重要極限公式及極限運(yùn)算性質(zhì),可知故選D.
4.B本題考查的知識點(diǎn)為重要極限公式.可知應(yīng)選B.
5.D本題考查的知識點(diǎn)為重要極限公式或等價(jià)無窮小量代換.
解法1
解法2
6.B
7.C
8.D本題考查的知識點(diǎn)為重要極限公式或等價(jià)無窮小代換.
解法1由可知
解法2當(dāng)x→0時(shí),sinx~x,sinmx~mx,因此
9.B
10.B
11.A
12.Ay=3-x,則y'=3-x。ln3*(-x)'=-3-xln3。因此選A。
13.D
14.C
15.A解析:
16.D
17.C
18.D
19.C點(diǎn)(-1,0)在曲線y=x2+5x+4上.y=x2+5x+4,y'=2x+5,由導(dǎo)數(shù)的幾何意義可知,曲線y=x2+5x+4在點(diǎn)(-1,0)處切線的斜率為3,所以選C.
20.C本題考查了一元函數(shù)的一階導(dǎo)數(shù)的知識點(diǎn)。
Y=x2+1,(dy)/(dx)=2x
21.A解析:績效評估的步驟:(1)確定特定的績效評估目標(biāo);(2)確定考評責(zé)任者;(3)評價(jià)業(yè)績;(4)公布考評結(jié)果,交流考評意見;(5)根據(jù)考評結(jié)論,將績效評估的結(jié)論備案。
22.C本題考查的知識點(diǎn)為函數(shù)連續(xù)性的概念。由于f(x)在點(diǎn)x=0連續(xù),因此,故a=1,應(yīng)選C。
23.A本題考查的知識點(diǎn)為導(dǎo)數(shù)的定義.
24.B因f'(x)=f(x)·2,即y'=2y,此為常系數(shù)一階線性齊次方程,其特征根為r=2,所以其通解為y=Ce2x,又當(dāng)x=0時(shí),f(0)=ln2,所以C=ln2,故f(x)=e2xln2.
25.B解析:
26.B解析:
27.C
28.D解析:
29.B
30.D
31.C本題考查的知識點(diǎn)為基本初等函數(shù)的求導(dǎo).
y=5x,y'=5xln5,因此應(yīng)選C.
32.A
33.A由于f(x)在(0,1)內(nèi)有f'(x)>0,可知f(x)在(0,1)內(nèi)單調(diào)增加,故應(yīng)選A.
34.C本題考查的知識點(diǎn)為定積分的對稱性.
由定積分的對稱性質(zhì)可知:若f(x)為[-a,a]上的連續(xù)的奇函數(shù),則
可知應(yīng)選C.
35.C
36.D本題考查的知識點(diǎn)為級數(shù)的基本性質(zhì).
37.B本題考查的知識點(diǎn)為導(dǎo)數(shù)的定義.
由于存在,因此
可知應(yīng)選B.
38.C本題考查的知識點(diǎn)為不定積分的性質(zhì).
(∫f5x)dx)'為將f(5x)先對x積分,后對x求導(dǎo).若設(shè)g(x)=f(5x),則(∫f5x)dx)'=(∫g(x)dx)'表示先將g(x)對x積分,后對x求導(dǎo),因此(∫f(5x)dx)'=(∫g(x)dx)'=g(x)=f(5x).
可知應(yīng)選C.
39.B
40.C
41.A
42.B
43.A
44.B因處處成立,于是函數(shù)在(-∞,+∞)內(nèi)都是單調(diào)增加的,故在[-1,1]上單調(diào)增加.
45.D
46.D解析:
47.C
48.D解析:
49.C本題考查的知識點(diǎn)為導(dǎo)數(shù)的幾何意義.
由于y=x-ex,y'=1-ex,y'|x=0=0.由導(dǎo)數(shù)的幾何意義可知,曲線y=x-ex在點(diǎn)(0,-1)處切線斜率為0,因此選C.
50.Bπ1x+y一3z+1=0的法向量n1=(1,1,一3)π2:2x+y+z=0的法向量n2=(2,1,1)∵n1.n2=(1,1,一3).(2,1,1)=0∵n1⊥n2;∴π1⊥π2
51.
52.22本題考查了函數(shù)的極值的知識點(diǎn)。f'(x)=3x2-12=3(x-2)(x+2),當(dāng)x=2或x=-2時(shí),f'(x)=0,當(dāng)x<-2時(shí),f'(x)>0;當(dāng)-2<x<2時(shí),f'(x)<0;當(dāng)x>2時(shí),f’(x)>0,因此x=2是極小值點(diǎn),
53.x--arctanx+C本題考查了不定積分的知識點(diǎn)。
54.本題考查的知識點(diǎn)為直線的方程和平面與直線的關(guān)系.
由于直線與已知平面垂直,可知直線的方向向量s與平面的法向量n平行.可以取s=n=(2,1,-3),又已知直線過點(diǎn)(0,0,0),由直線的標(biāo)準(zhǔn)式方程可知
為所求.
55.本題考查的知識點(diǎn)為兩個(gè):參數(shù)方程形式的函數(shù)求導(dǎo)和可變上限積分求導(dǎo).
56.1/(1-x)2
57.
58.連續(xù)但不可導(dǎo)連續(xù)但不可導(dǎo)
59.y+3x2+x
60.
61.
本題考查的知識點(diǎn)為求直線的方程.
由于所求直線平行于已知直線1,可知兩條直線的方向向量相同,由直線的標(biāo)準(zhǔn)式方程可知所求直線方程為
62.
63.
本題考查的知識點(diǎn)為隱函數(shù)的微分.
解法1將所給表達(dá)式兩端關(guān)于x求導(dǎo),可得
從而
解法2將所給表達(dá)式兩端微分,
64.x=-3x=-3解析:65.本題考查的知識點(diǎn)為極限運(yùn)算。
所求極限的表達(dá)式為分式,其分母的極限不為零。
因此
66.1本題考查了冪級數(shù)的收斂半徑的知識點(diǎn)。67.本題考查的知識點(diǎn)為定積分的基本公式。
68.69.0本題考查的知識點(diǎn)為連續(xù)函數(shù)在閉區(qū)間上的最小值問題.
通常求解的思路為:
先求出連續(xù)函數(shù)f(x)在(a,b)內(nèi)的所有駐點(diǎn)x1,…,xk.
比較f(x1),f(x2),…,f(xk),f(a),f(b),其中最大(小)值即為f(x)在[a,b]上的最大(小)值,相應(yīng)的x即為,(x)在[a,b]上的最大(小)值點(diǎn).
由y=x3-2x+1,可得
Y'=3x2-2.
令y'=0得y的駐點(diǎn)為,所給駐點(diǎn)皆不在區(qū)間(1,2)內(nèi),且當(dāng)x∈(1,2)時(shí)有
Y'=3x2-2>0.
可知y=x3-2x+1在[1,2]上為單調(diào)增加函數(shù),最小值點(diǎn)為x=1,最小值為f(1)=0.
注:也可以比較f(1),f(2)直接得出其中最小者,即為f(x)在[1,2]上的最小值.
本題中常見的錯(cuò)誤是,得到駐點(diǎn)和之后,不討論它們是否在區(qū)間(1,2)內(nèi).而是錯(cuò)誤地比較
從中確定f(x)在[1,2]上的最小值.則會得到錯(cuò)誤結(jié)論.
70.71.函數(shù)的定義域?yàn)?/p>
注意
72.
73.
列表:
說明
74.需求規(guī)律為Q=100ep-2.25p
∴當(dāng)P=10時(shí)價(jià)格上漲1%需求量減少2.5%需求規(guī)律為Q=100ep-2.25p,
∴當(dāng)P=10時(shí),價(jià)格上漲1%需求量減少2.5%
75.
76.
77.由等價(jià)無窮小量的定義可知
78.
79.
80.
81.
82.
83.
則
84.
85.
86.由一階線性微分方程通解公式有
87.曲線方程為,點(diǎn)(1,3)在曲線上.
因此所求曲線方程為或?qū)憺?x+y-5=0.
如果函數(shù)y=f(x)在點(diǎn)x0處的導(dǎo)數(shù)f′(x0)存在,則表明曲線y=f(x)在點(diǎn)
(x0,fx0))處存在切線,且切線的斜率為f′(x0).切線方程為
88
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 財(cái)稅績效制度
- 象山村民說事制度
- 論按日計(jì)罰制度
- 落實(shí)企業(yè)(職業(yè))年金制度
- 2026云南中國郵政儲蓄銀行股份有限公司普洱市分行招聘10人參考考試題庫附答案解析
- 桂林銀行考試試題及答案
- 2026廣東清遠(yuǎn)市陽山縣城市管理和綜合執(zhí)法局第一次招聘城市管理監(jiān)察協(xié)管員和政府購買服務(wù)人員3人參考考試題庫附答案解析
- 2026上海黃浦區(qū)中意工程創(chuàng)新學(xué)院教務(wù)崗位招聘1人參考考試題庫附答案解析
- 2026四川成都城建投資管理集團(tuán)有限責(zé)任公司所屬數(shù)智集團(tuán)招聘3人備考考試試題附答案解析
- 2026上半年黑龍江省體育局事業(yè)單位招聘13人備考考試試題附答案解析
- 《中華人民共和國危險(xiǎn)化學(xué)品安全法》全套解讀
- 推拿按摩腰背部課件
- 散養(yǎng)土雞養(yǎng)雞課件
- 戰(zhàn)略屋策略體系roadmapPP T模板(101 頁)
- 2025年醫(yī)療輔助崗面試題及答案
- T-CI 1078-2025 堿性電解水復(fù)合隔膜測試方法
- 新入職小學(xué)教師如何快速成長個(gè)人專業(yè)發(fā)展計(jì)劃
- 門診導(dǎo)診工作流程
- 2025云南保山電力股份有限公司招聘(100人)筆試歷年參考題庫附帶答案詳解
- 寫字樓物業(yè)安全管理實(shí)務(wù)操作手冊
- 2025年及未來5年中國飲料工業(yè)行業(yè)競爭格局分析及發(fā)展趨勢預(yù)測報(bào)告
評論
0/150
提交評論