2022-2023學(xué)年河北省衡水市普通高校對(duì)口單招高等數(shù)學(xué)一自考測(cè)試卷(含答案)_第1頁(yè)
2022-2023學(xué)年河北省衡水市普通高校對(duì)口單招高等數(shù)學(xué)一自考測(cè)試卷(含答案)_第2頁(yè)
2022-2023學(xué)年河北省衡水市普通高校對(duì)口單招高等數(shù)學(xué)一自考測(cè)試卷(含答案)_第3頁(yè)
2022-2023學(xué)年河北省衡水市普通高校對(duì)口單招高等數(shù)學(xué)一自考測(cè)試卷(含答案)_第4頁(yè)
2022-2023學(xué)年河北省衡水市普通高校對(duì)口單招高等數(shù)學(xué)一自考測(cè)試卷(含答案)_第5頁(yè)
已閱讀5頁(yè),還剩32頁(yè)未讀 繼續(xù)免費(fèi)閱讀

付費(fèi)下載

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

2022-2023學(xué)年河北省衡水市普通高校對(duì)口單招高等數(shù)學(xué)一自考測(cè)試卷(含答案)學(xué)校:________班級(jí):________姓名:________考號(hào):________

一、單選題(50題)1.若∫f(x)dx=F(x)+C,則∫f(2x)dx等于().A.A.2F(2x)+CB.F(2x)+CC.F(x)+CD.F(2x)/2+C

2.A.x2+C

B.x2-x+C

C.2x2+x+C

D.2x2+C

3.

4.

5.A.A.

B.

C.

D.

6.A.6YB.6XYC.3XD.3X^2

7.A.A.僅為x=+1B.僅為x=0C.僅為x=-1D.為x=0,±1

8.

A.f(x)-f(a)B.f(a)-f(x)C.f(x)D.f(a)

9.設(shè)函數(shù)f(x)在區(qū)間(0,1)內(nèi)可導(dǎo)f(x)>0,則在(0,1)內(nèi)f(x)().

A.單調(diào)增加B.單調(diào)減少C.為常量D.既非單調(diào),也非常量

10.

11.設(shè)f(x)在點(diǎn)x0的某鄰域內(nèi)有定義,且,則f'(x0)等于().A.-1B.-1/2C.1/2D.1

12.當(dāng)x→0時(shí),與x等價(jià)的無(wú)窮小量是

A.A.

B.ln(1+x)

C.C.

D.x2(x+1)

13.A.A.絕對(duì)收斂B.條件收斂C.發(fā)散D.收斂性與口有關(guān)

14.設(shè)y=cos4x,則dy=()。A.4sin4xdxB.-4sin4xdxC.(1/4)sin4xdxD.-(1/4)sin4xdx

15.

16.

17.

18.

19.

20.下列等式成立的是

A.A.

B.B.

C.C.

D.D.

21.

22.

23.圖示懸臂梁,若已知截面B的撓度和轉(zhuǎn)角分別為vB和θB,則C端撓度為()。

A.vC=2uB

B.uC=θBα

C.vC=uB+θBα

D.vC=vB

24.設(shè)在點(diǎn)x=1處連續(xù),則a等于()。A.-1B.0C.1D.225.。A.2B.1C.-1/2D.0

26.

27.如圖所示,在乎板和受拉螺栓之間墊上一個(gè)墊圈,可以提高()。

A.螺栓的拉伸強(qiáng)度B.螺栓的剪切強(qiáng)度C.螺栓的擠壓強(qiáng)度D.平板的擠壓強(qiáng)度

28.

A.2x+1B.2xy+1C.x2+1D.2xy

29.

A.f(x)

B.f(x)+C

C.f/(x)

D.f/(x)+C

30.過(guò)點(diǎn)(0,2,4)且平行于平面x+2z=1,y-3z=2的直線方程為

A.

B.

C.

D.-2x+3(y-2)+z-4=0

31.

32.

33.

34.

35.

36.

37.

38.

39.A.A.1B.2C.1/2D.-1

40.

41.過(guò)曲線y=xlnx上M0點(diǎn)的切線平行于直線y=2x,則切點(diǎn)M0的坐標(biāo)是().A.A.(1,0)B.(e,0)C.(e,1)D.(e,e)42.A.sin(2x-1)+C

B.

C.-sin(2x-1)+C

D.

43.

44.

45.

46.函數(shù)y=sinx在區(qū)間[0,π]上滿足羅爾定理的ξ等于().A.A.0B.π/4C.π/2D.π

47.

48.

49.

50.設(shè)y=f(x)在(a,b)內(nèi)有二階導(dǎo)數(shù),且f"<0,則曲線y=f(x)在(a,b)內(nèi)().A.A.凹B.凸C.凹凸性不可確定D.單調(diào)減少二、填空題(20題)51.

52.

53.

54.

55.

56.

57.

58.

59.60.微分方程y"=y的通解為______.

61.曲線y=x3+2x+3的拐點(diǎn)坐標(biāo)是_______。

62.

63.

64.

65.66.

67.

68.69.70.設(shè)y=y(x)由方程x2+xy2+2y=1確定,則dy=______.三、計(jì)算題(20題)71.研究級(jí)數(shù)的收斂性(即何時(shí)絕對(duì)收斂,何時(shí)條件收斂,何時(shí)發(fā)散,其中常數(shù)a>0.72.

73.求微分方程的通解.74.75.設(shè)拋物線Y=1-x2與x軸的交點(diǎn)為A、B,在拋物線與x軸所圍成的平面區(qū)域內(nèi),以線段AB為下底作內(nèi)接等腰梯形ABCD(如圖2—1所示).設(shè)梯形上底CD長(zhǎng)為2x,面積為

S(x).

(1)寫出S(x)的表達(dá)式;

(2)求S(x)的最大值.

76.證明:

77.

78.求曲線在點(diǎn)(1,3)處的切線方程.79.求函數(shù)一的單調(diào)區(qū)間、極值及其曲線的凹凸區(qū)間和拐點(diǎn).80.求函數(shù)f(x)=x3-3x+1的單調(diào)區(qū)間和極值.81.82.

83.當(dāng)x一0時(shí)f(x)與sin2x是等價(jià)無(wú)窮小量,則84.求函數(shù)y=x-lnx的單調(diào)區(qū)間,并求該曲線在點(diǎn)(1,1)處的切線l的方程.

85.已知某商品市場(chǎng)需求規(guī)律為Q=100e-0.25p,當(dāng)p=10時(shí),若價(jià)格上漲1%,需求量增(減)百分之幾?

86.87.設(shè)平面薄板所占Oxy平面上的區(qū)域D為1≤x2+y2≤4,x≥0,y≥0,其面密度

u(x,y)=2+y2,求該薄板的質(zhì)量m.

88.求微分方程y"-4y'+4y=e-2x的通解.

89.

90.將f(x)=e-2X展開為x的冪級(jí)數(shù).四、解答題(10題)91.

92.

93.

94.

95.

96.

97.

98.99.100.求垂直于直線2x-6y+1=0且與曲線y=x3+3x2-5相切的直線方程.五、高等數(shù)學(xué)(0題)101.曲線y=lnx在點(diǎn)_________處的切線平行于直線y=2x一3。

六、解答題(0題)102.

參考答案

1.D本題考查的知識(shí)點(diǎn)為不定積分的第一換元積分法(湊微分法).

由題設(shè)知∫f(x)dx=F(x)+C,因此

可知應(yīng)選D.

2.B本題考查的知識(shí)點(diǎn)為不定積分運(yùn)算.

因此選B.

3.D

4.B解析:

5.B本題考查的知識(shí)點(diǎn)為偏導(dǎo)數(shù)運(yùn)算.

由于z=tan(xy),因此

可知應(yīng)選B.

6.D

7.C

8.C

本題考查的知識(shí)點(diǎn)為可變限積分求導(dǎo).

9.A本題考查的知識(shí)點(diǎn)為利用導(dǎo)數(shù)符號(hào)判定函數(shù)的單調(diào)性.

由于f(x)在(0,1)內(nèi)有f(x)>0,可知f(x)在(0,1)內(nèi)單調(diào)增加,故應(yīng)選A.

10.A

11.B由導(dǎo)數(shù)的定義可知

可知,故應(yīng)選B。

12.B本題考查了等價(jià)無(wú)窮小量的知識(shí)點(diǎn)

13.A

14.B

15.C

16.A解析:

17.B

18.B解析:

19.B解析:

20.C本題考查了函數(shù)的極限的知識(shí)點(diǎn)

21.B

22.D

23.C

24.C本題考查的知識(shí)點(diǎn)為函數(shù)連續(xù)性的概念。

由于y為分段函數(shù),x=1為其分段點(diǎn)。在x=1的兩側(cè)f(x)的表達(dá)式不同。因此討論y=f(x)在x=1處的連續(xù)性應(yīng)該利用左連續(xù)與右連續(xù)的概念。由于

當(dāng)x=1為y=f(x)的連續(xù)點(diǎn)時(shí),應(yīng)有存在,從而有,即

a+1=2。

可得:a=1,因此選C。

25.A

26.A

27.D

28.B

29.A由不定積分的性質(zhì)“先積分后求導(dǎo),作用抵消”可知應(yīng)選A.

30.C

31.A解析:

32.B

33.B

34.D

35.A

36.C

37.D

38.A

39.C

40.D

41.D本題考查的知識(shí)點(diǎn)為導(dǎo)數(shù)的幾何意義.

由導(dǎo)數(shù)的幾何意義可知,若y=f(x)在點(diǎn)x0處可導(dǎo),則曲線y=f(x)在點(diǎn)(x0,f(x0))處必定存在切線,且切線的斜率為f'(x0).

由于y=xlnx,可知

y'=1+lnx,

切線與已知直線y=2x平行,直線的斜率k1=2,可知切線的斜率k=k1=2,從而有

1+lnx0=2,

可解得x0=e,從而知

y0=x0lnx0=elne=e.

故切點(diǎn)M0的坐標(biāo)為(e,e),可知應(yīng)選D.

42.B本題考查的知識(shí)點(diǎn)為不定積分換元積分法。

因此選B。

43.D解析:

44.A

45.C解析:

46.C本題考查的知識(shí)點(diǎn)為羅爾定理的條件與結(jié)論.

由于y=sinx在[0,π]上連續(xù),在(0,π)內(nèi)可導(dǎo),且y|x=0=0=y|x=π,可知y=sinx在[0,π]上滿足羅爾定理,因此必定存在ξ∈(0,π),使y'|x=ξ=cosx|x=ξ=cosξ=0,從而應(yīng)有.

故知應(yīng)選C.

47.D解析:

48.C

49.B

50.A本題考查的知識(shí)點(diǎn)為利用二階導(dǎo)數(shù)符號(hào)判定曲線的凹凸性.

由于在(a,b)區(qū)間內(nèi)f"(x)<0,可知曲線y=f(x)在(a,b)內(nèi)為凹的,因此選A.

51.1/(1-x)2

52.ln2

53.3

54.22解析:

55.

解析:

56.y=0

57.

58.

59.

60.y'=C1e-x+C2ex

;本題考查的知識(shí)點(diǎn)為二階常系數(shù)線性齊次微分方程的求解.

將方程變形,化為y"-y=0,

特征方程為r2-1=0;

特征根為r1=-1,r2=1.

因此方程的通解為y=C1e-x+C2ex.

61.(03)

62.本題考查的知識(shí)點(diǎn)為連續(xù)性與極限的關(guān)系.

由于為初等函數(shù),定義域?yàn)?-∞,0),(0,+∞),點(diǎn)x=2為其定義區(qū)間(0,+∞)內(nèi)的點(diǎn),從而知

63.

64.y=lnx+Cy=lnx+C解析:

65.1

66.

67.2/52/5解析:

68.

69.

70.

71.

72.

73.

74.

75.

76.

77.

78.曲線方程為,點(diǎn)(1,3)在曲線上.

因此所求曲線方程為或?qū)憺?x+y-5=0.

如果函數(shù)y=f(x)在點(diǎn)x0處的導(dǎo)數(shù)f′(x0)存在,則表明曲線y=f(x)在點(diǎn)

(x0,fx0))處存在切線,且切線的斜率為f′(x0).切線方程為

79.

列表:

說(shuō)明

80.函數(shù)的定義域?yàn)?/p>

注意

81.

82.由一階線性微分方程通解公式有

83.由等價(jià)無(wú)窮小量的定義可知

84.

85.需求規(guī)律為Q=100ep-2.25p

∴當(dāng)P=10時(shí)價(jià)格上漲1%需求量減少2.5%需求規(guī)律為Q=100ep-2.25p,

∴當(dāng)P=10時(shí),價(jià)格上漲1%需求量減少2.5%

86.

87.由二重積分物理意義知

88.解:原方程對(duì)應(yīng)的齊次方程為y"-4y'+4y=0,

89.

90.

91.

92.

93.

94.

95.

96.

97.

98.

99.100.由于直線2x-6y+1=0的斜率k=1/3,與其垂直的直線的斜率k1=-1/k=-3.對(duì)于y=x3+3x25,y'=3x2+6x.由題意應(yīng)有3x2+6x=-3,因此x2+2x+1=0,x=-1,此時(shí)y=(-1)3+3(-1)2-5=-3.即切點(diǎn)為(-1,-3).切線方程為y+3=-3(x+1),或?qū)憺?x+

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

最新文檔

評(píng)論

0/150

提交評(píng)論