版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
2022-2023學(xué)年福建省廈門市成考專升本高等數(shù)學(xué)一自考模擬考試(含答案)學(xué)校:________班級(jí):________姓名:________考號(hào):________
一、單選題(50題)1.下列關(guān)系式中正確的有()。A.
B.
C.
D.
2.已知斜齒輪上A點(diǎn)受到另一齒輪對(duì)它作用的捏合力Fn,F(xiàn)n沿齒廓在接觸處的公法線方向,且垂直于過(guò)A點(diǎn)的齒面的切面,如圖所示,α為壓力角,β為斜齒輪的螺旋角。下列關(guān)于一些力的計(jì)算有誤的是()。
A.圓周力FT=Fncosαcosβ
B.徑向力Fa=Fncosαcosβ
C.軸向力Fr=Fncosα
D.軸向力Fr=Fnsinα
3.f(x)在x=0的某鄰域內(nèi)一階導(dǎo)數(shù)連續(xù)且則()。A.x=0不是f(x)的極值點(diǎn)B.x=0是f(x)的極大值點(diǎn)C.x=0是f(x)的極小值點(diǎn)D.x=0是f(x)的拐點(diǎn)
4.f(x)在[a,b]上連續(xù)是f(x)在[a,b]上有界的()條件。A.充分B.必要C.充要D.非充分也非必要
5.微分方程y"-4y=0的特征根為A.A.0,4B.-2,2C.-2,4D.2,4
6.
7.曲線y=x-ex在點(diǎn)(0,-1)處切線的斜率k=A.A.2B.1C.0D.-1
8.A.沒(méi)有漸近線B.僅有水平漸近線C.僅有鉛直漸近線D.既有水平漸近線,又有鉛直漸近線
9.
10.∫1+∞e-xdx=()
A.-eB.-e-1
C.e-1
D.e
11.方程x2+y2-2z=0表示的二次曲面是.
A.柱面B.球面C.旋轉(zhuǎn)拋物面D.橢球面
12.函數(shù)y=ex+e-x的單調(diào)增加區(qū)間是
A.(-∞,+∞)B.(-∞,0]C.(-1,1)D.[0,+∞)
13.
A.f(x)-f(a)B.f(a)-f(x)C.f(x)D.f(a)
14.
15.下列關(guān)于構(gòu)建的幾何形狀說(shuō)法不正確的是()。
A.軸線為直線的桿稱為直桿B.軸線為曲線的桿稱為曲桿C.等截面的直桿稱為等直桿D.橫截面大小不等的桿稱為截面桿16.A.0B.2C.2f(-1)D.2f(1)17.()。A.3B.2C.1D.018.設(shè)y=sinx,則y'|x=0等于().A.1B.0C.-1D.-219.A.A.
B.
C.
D.
20.圖示懸臂梁,若已知截面B的撓度和轉(zhuǎn)角分別為vB和θB,則C端撓度為()。
A.vC=2uB
B.uC=θBα
C.vC=uB+θBα
D.vC=vB
21.下列命題不正確的是()。
A.兩個(gè)無(wú)窮大量之和仍為無(wú)窮大量
B.上萬(wàn)個(gè)無(wú)窮小量之和仍為無(wú)窮小量
C.兩個(gè)無(wú)窮大量之積仍為無(wú)窮大量
D.兩個(gè)有界變量之和仍為有界變量
22.A.(1/3)x3
B.x2
C.2xD.(1/2)x
23.當(dāng)x→0時(shí),下列變量中為無(wú)窮小的是()。
A.lg|x|
B.
C.cotx
D.
24.設(shè)y=cosx,則y''=()A.sinxB.cosxC.-cosxD.-sinx
25.
A.絕對(duì)收斂
B.條件收斂
C.發(fā)散
D.收斂性不能判定
26.
27.設(shè)f(x)為連續(xù)函數(shù),則下列關(guān)系式中正確的是()A.A.
B.
C.
D.
28.如圖所示,在半徑為R的鐵環(huán)上套一小環(huán)M,桿AB穿過(guò)小環(huán)M并勻速繞A點(diǎn)轉(zhuǎn)動(dòng),已知轉(zhuǎn)角φ=ωt(其中ω為一常數(shù),φ的單位為rad,t的單位為s),開(kāi)始時(shí)AB桿處于水平位置,則當(dāng)小環(huán)M運(yùn)動(dòng)到圖示位置時(shí)(以MO為坐標(biāo)原點(diǎn),小環(huán)Md運(yùn)動(dòng)方程為正方向建立自然坐標(biāo)軸),下面說(shuō)法不正確的一項(xiàng)是()。
A.小環(huán)M的運(yùn)動(dòng)方程為s=2Rωt
B.小環(huán)M的速度為
C.小環(huán)M的切向加速度為0
D.小環(huán)M的法向加速度為2Rω2
29.A.A.0B.1/2C.1D.2
30.設(shè)有直線當(dāng)直線l1與l2平行時(shí),λ等于().
A.1B.0C.-1/2D.-1
31.
32.
33.
34.
35.A.A.1B.2C.1/2D.-136.A.
B.
C.
D.
37.方程x2+2y2+3z2=1表示的二次曲面是
A.圓錐面B.旋轉(zhuǎn)拋物面C.球面D.橢球面
38.
39.
A.2x+1B.2xy+1C.x2+1D.2xy40.A.2/5B.0C.-2/5D.1/2
41.
42.
43.
44.設(shè)f(x)為區(qū)間[a,b]上的連續(xù)函數(shù),則曲線y=f(x)與直線x=a,x=b,y=0所圍成的封閉圖形的面積為().A.A.
B.
C.
D.不能確定
45.下列()不是組織文化的特征。
A.超個(gè)體的獨(dú)特性B.不穩(wěn)定性C.融合繼承性D.發(fā)展性46.A.-e2x-y
B.e2x-y
C.-2e2x-y
D.2e2x-y
47.()。A.
B.
C.
D.
48.若y(x-1)=x2-1,則y'(x)等于()A.2x+2B.x(x+1)C.x(x-1)D.2x-1
49.
50.A.A.凹B.凸C.凹凸性不可確定D.單調(diào)減少二、填空題(20題)51.
52.53.54.設(shè)f(x,y,z)=xyyz,則
=_________.
55.
56.
57.
58.微分方程y=x的通解為_(kāi)_______。
59.
60.設(shè)=3,則a=________。
61.
62.
63.
64.
65.
66.67.68.設(shè)z=tan(xy-x2),則=______.
69.
70.設(shè)y=f(x)在點(diǎn)x=0處可導(dǎo),且x=0為f(x)的極值點(diǎn),則f'(0)=______.三、計(jì)算題(20題)71.72.證明:73.
74.求函數(shù)f(x)=x3-3x+1的單調(diào)區(qū)間和極值.75.設(shè)拋物線Y=1-x2與x軸的交點(diǎn)為A、B,在拋物線與x軸所圍成的平面區(qū)域內(nèi),以線段AB為下底作內(nèi)接等腰梯形ABCD(如圖2—1所示).設(shè)梯形上底CD長(zhǎng)為2x,面積為
S(x).
(1)寫(xiě)出S(x)的表達(dá)式;
(2)求S(x)的最大值.
76.當(dāng)x一0時(shí)f(x)與sin2x是等價(jià)無(wú)窮小量,則77.設(shè)平面薄板所占Oxy平面上的區(qū)域D為1≤x2+y2≤4,x≥0,y≥0,其面密度
u(x,y)=2+y2,求該薄板的質(zhì)量m.78.79.
80.
81.求函數(shù)y=x-lnx的單調(diào)區(qū)間,并求該曲線在點(diǎn)(1,1)處的切線l的方程.82.求曲線在點(diǎn)(1,3)處的切線方程.83.研究級(jí)數(shù)的收斂性(即何時(shí)絕對(duì)收斂,何時(shí)條件收斂,何時(shí)發(fā)散,其中常數(shù)a>0.
84.已知某商品市場(chǎng)需求規(guī)律為Q=100e-0.25p,當(dāng)p=10時(shí),若價(jià)格上漲1%,需求量增(減)百分之幾?
85.求微分方程的通解.86.求函數(shù)一的單調(diào)區(qū)間、極值及其曲線的凹凸區(qū)間和拐點(diǎn).87.將f(x)=e-2X展開(kāi)為x的冪級(jí)數(shù).
88.求微分方程y"-4y'+4y=e-2x的通解.
89.
90.
四、解答題(10題)91.
92.求由曲線y=1眥過(guò)點(diǎn)(e,1)的切線、x軸及該曲線所圍成平面圖形D的面積A及該圖形繞y軸旋轉(zhuǎn)一周所生成的旋轉(zhuǎn)體的體積Vy。
93.94.已知f(x)在[a,b]上連續(xù)且f(a)=f(b),在(a,b)內(nèi)f''(x)存在,連接A(a,f(a)),B(b,f(b))兩點(diǎn)的直線交曲線y=f(x)于C(c,f(c))且a<c<b,試證在(a,b)內(nèi)至少有一點(diǎn)ξ使得f''(ξ)=0.
95.
96.
97.
98.設(shè)z=ysup>2</sup>esup>3x</sup>,求dz。
99.
100.五、高等數(shù)學(xué)(0題)101.設(shè)f(x),g(x)在[a,b]上連續(xù),則()。
A.若,則在[a,b]上f(x)=0
B.若,則在[a,b]上f(x)=g(x)
C.若a<c<d<b,則
D.若f(x)≤g(z),則
六、解答題(0題)102.
參考答案
1.B本題考查的知識(shí)點(diǎn)為定積分的性質(zhì).
由于x,x2都為連續(xù)函數(shù),因此與都存在。又由于0<x<1時(shí),x>x2,因此
可知應(yīng)選B。
2.C
3.A∵分母極限為0,分子極限也為0;(否則極限不存在)用羅必達(dá)法則同理即f"(0)一1≠0;x=0不是駐點(diǎn)∵可導(dǎo)函數(shù)的極值點(diǎn)必是駐點(diǎn)∴選A。
4.A定理:閉區(qū)間上的連續(xù)函數(shù)必有界;反之不一定。
5.B由r2-4=0,r1=2,r2=-2,知y"-4y=0的特征根為2,-2,故選B。
6.C
7.C
8.D
9.C
10.C
11.C本題考查了二次曲面的知識(shí)點(diǎn)。x2+y2-2z=0可化為x2/2+y2/2=z,故表示的是旋轉(zhuǎn)拋物面。
12.Dy=ex+e-x,則y'=ex-e-x,當(dāng)x>0時(shí),y'>0,所以y在區(qū)間[0,+∞)上單調(diào)遞增.
13.C
本題考查的知識(shí)點(diǎn)為可變限積分求導(dǎo).
14.C
15.D
16.C本題考查了定積分的性質(zhì)的知識(shí)點(diǎn)。
17.A
18.A由于
可知應(yīng)選A.
19.D
20.C
21.A∵f(x)→∞;g(x)→∞∴f(x)+g(x)是不定型,不一定是無(wú)窮大。
22.C本題考查了一元函數(shù)的一階導(dǎo)數(shù)的知識(shí)點(diǎn)。
Y=x2+1,(dy)/(dx)=2x
23.D
24.Cy=cosx,y'=-sinx,y''=-cosx.
25.A
26.B
27.B本題考查的知識(shí)點(diǎn)為:若f(x)可積分,則定積分的值為常數(shù);可變上限積分求導(dǎo)公式的運(yùn)用.
注意到A左端為定積分,定積分存在時(shí),其值一定為常數(shù),常量的導(dǎo)數(shù)等于零.因此A不正確.
由可變上限積分求導(dǎo)公式可知B正確.C、D都不正確.
28.D
29.C本題考查的知識(shí)點(diǎn)為函數(shù)連續(xù)性的概念.
30.C解析:
31.A
32.A解析:
33.C解析:
34.D
35.C
36.D本題考查的知識(shí)點(diǎn)為牛頓一萊布尼茨公式和定積分的換元法。因此選D。
37.D本題考查了二次曲面的知識(shí)點(diǎn)。
38.C解析:
39.B
40.A本題考查了定積分的性質(zhì)的知識(shí)點(diǎn)
41.B解析:
42.A解析:
43.A
44.B本題考查的知識(shí)點(diǎn)為定積分的幾何意義.
由定積分的幾何意義可知應(yīng)選B.
常見(jiàn)的錯(cuò)誤是選C.如果畫(huà)個(gè)草圖,則可以避免這類錯(cuò)誤.
45.B解析:組織文化的特征:(1)超個(gè)體的獨(dú)特性;(2)相對(duì)穩(wěn)定性;(3)融合繼承性;(4)發(fā)展性。
46.C本題考查了二元函數(shù)的高階偏導(dǎo)數(shù)的知識(shí)點(diǎn)。
47.D
48.A因f(x-1)=x2-1,故f(x)=(x+1)2-1=x2+2x,則f'(x)=2x+2.
49.D
50.A本題考查的知識(shí)點(diǎn)為利用二階導(dǎo)數(shù)符號(hào)判定曲線的凹凸性.
51.11解析:
52.53.
本題考查的知識(shí)點(diǎn)為二階線性常系數(shù)齊次微分方程的求解.
二階線性常系數(shù)齊次微分方程求解的-般步驟為:先寫(xiě)出特征方程,求出特征根,再寫(xiě)出方程的通解.
54.=xylnx.yz+xy.zyz-1=xyz-1y(ylnx+z)。
55.
本題考查的知識(shí)點(diǎn)為連續(xù)性與極限的關(guān)系,左極限、右極限與極限的關(guān)系.
56.(-21)(-2,1)
57.2
58.本題考查可分離變量的微分方程.分離變量得dy=xdx,兩端分別積分,∫dy=∫xdx,
59.
解析:
60.
61.
62.
63.
64.12x
65.F'(x)
66.
67.1本題考查了冪級(jí)數(shù)的收斂半徑的知識(shí)點(diǎn)。
68.本題考查的知識(shí)點(diǎn)為二元函數(shù)的偏導(dǎo)數(shù).
z=tan(xy-x2),
69.55解析:70.0本題考查的知識(shí)點(diǎn)為極值的必要條件.
由于y=f(x)在點(diǎn)x=0可導(dǎo),且x=0為f(x)的極值點(diǎn),由極值的必要條件可知有f'(0)=0.
71.
72.
73.
則
74.函數(shù)的定義域?yàn)?/p>
注意
75.
76.由等價(jià)無(wú)窮小量的定義可知77.由二重積分物理意義知
78.79.由一階線性微分方程通解公式有
80.
81.
82.曲線方程為,點(diǎn)(1,3)在曲線上.
因此所求曲線方程為或?qū)憺?x+y-5=0.
如果函數(shù)y=f(x)在點(diǎn)x0處的導(dǎo)數(shù)f′(x0)存在,則表明曲線y=f(x)在點(diǎn)
(x0,fx0))處存在切線,且切線的斜率為f′(x0).切線方程為
83.
84.需求規(guī)律為Q=100ep-2.25p
∴當(dāng)P=10時(shí)價(jià)格上漲1%需求量減少2.5%需求規(guī)律為Q=100ep-2.25p,
∴當(dāng)P=10時(shí),價(jià)格上漲1%需求量減少2.5%
85.
86.
列表:
說(shuō)明
87.
88.解:原方程對(duì)應(yīng)的齊次方程為y"-4y'+4y=0,
89.
90.91
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 輪滑培訓(xùn)學(xué)校規(guī)章制度
- 鄉(xiāng)鎮(zhèn)衛(wèi)生院骨干培訓(xùn)制度
- 公司培訓(xùn)儀器設(shè)備管理制度
- 職工培訓(xùn)項(xiàng)目管理制度
- 實(shí)訓(xùn)室安全培訓(xùn)考核制度
- 村殘協(xié)教育培訓(xùn)制度
- 急診科人員崗前培訓(xùn)制度
- 中醫(yī)婦科培訓(xùn)工作制度
- 干部培訓(xùn)大融合制度
- 員工培訓(xùn)體系管理制度
- 流程與TOC改善案例
- 【當(dāng)代中國(guó)婚禮空間設(shè)計(jì)研究4200字(論文)】
- GB/T 20322-2023石油及天然氣工業(yè)往復(fù)壓縮機(jī)
- 提撈采油安全操作規(guī)程
- DB3211-T 1048-2022 嬰幼兒日間照料托育機(jī)構(gòu)服務(wù)規(guī)范
- YY/T 1846-2022內(nèi)窺鏡手術(shù)器械重復(fù)性使用腹部沖吸器
- GB/T 5237.3-2017鋁合金建筑型材第3部分:電泳涂漆型材
- GB/T 3625-2007換熱器及冷凝器用鈦及鈦合金管
- GB/T 15390-2005工程用焊接結(jié)構(gòu)彎板鏈、附件和鏈輪
- 學(xué)生傷害事故處理辦法及案例分析
- 安全管理人員紅頭任命文件
評(píng)論
0/150
提交評(píng)論