版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
2022-2023學(xué)年甘肅省嘉峪關(guān)市普通高校對口單招高等數(shù)學(xué)一自考模擬考試(含答案)學(xué)校:________班級:________姓名:________考號:________
一、單選題(40題)1.單位長度扭轉(zhuǎn)角θ與下列哪項(xiàng)無關(guān)()。
A.桿的長度B.扭矩C.材料性質(zhì)D.截面幾何性質(zhì)
2.
3.
4.如圖所示,在半徑為R的鐵環(huán)上套一小環(huán)M,桿AB穿過小環(huán)M并勻速繞A點(diǎn)轉(zhuǎn)動,已知轉(zhuǎn)角φ=ωt(其中ω為一常數(shù),φ的單位為rad,t的單位為s),開始時(shí)AB桿處于水平位置,則當(dāng)小環(huán)M運(yùn)動到圖示位置時(shí)(以MO為坐標(biāo)原點(diǎn),小環(huán)Md運(yùn)動方程為正方向建立自然坐標(biāo)軸),下面說法不正確的一項(xiàng)是()。
A.小環(huán)M的運(yùn)動方程為s=2Rωt
B.小環(huán)M的速度為
C.小環(huán)M的切向加速度為0
D.小環(huán)M的法向加速度為2Rω2
5.設(shè)x2是f(x)的一個(gè)原函數(shù),則f(x)=A.A.2x
B.x3
C.(1/3)x3+C
D.3x3+C
6.
7.1954年,()提出了一個(gè)具有劃時(shí)代意義的概念——目標(biāo)管理。
A.西蒙B.德魯克C.梅奧D.亨利.甘特
8.
9.
10.A.
B.0
C.ln2
D.-ln2
11.
12.
13.
A.僅有水平漸近線
B.既有水平漸近線,又有鉛直漸近線
C.僅有鉛直漸近線
D.既無水平漸近線,又無鉛直漸近線
14.一端固定,一端為彈性支撐的壓桿,如圖所示,其長度系數(shù)的范圍為()。
A.μ<0.7B.μ>2C.0.7<μ<2D.不能確定
15.
16.已知y=ksin2x的一個(gè)原函數(shù)為y=cos2x,則k等于()。A.2B.1C.-1D.-217.A.A.2
B.
C.1
D.-2
18.
19.
20.
21.
22.力偶對剛體產(chǎn)生哪種運(yùn)動效應(yīng)()。
A.既能使剛體轉(zhuǎn)動,又能使剛體移動B.與力產(chǎn)生的運(yùn)動效應(yīng)有時(shí)候相同,有時(shí)不同C.只能使剛體轉(zhuǎn)動D.只能使剛體移動23.設(shè)f(x)在點(diǎn)x0的某鄰域內(nèi)有定義,且,則f'(x0)等于().A.-1B.-1/2C.1/2D.1
24.
25.
26.設(shè)y=sin(x-2),則dy=()A.A.-cosxdx
B.cosxdX
C.-cos(x-2)dx
D.cos(x-2)dx
27.A.eB.e-1
C.e2
D.e-228.A.A.
B.
C.
D.
29.設(shè)函數(shù)f(x)=2sinx,則f'(x)等于().A.A.2sinxB.2cosxC.-2sinxD.-2cosx.30.設(shè)函數(shù)f(x)在區(qū)間(0,1)內(nèi)可導(dǎo),f'(x)>0,則在(0,1)內(nèi)f(x)().A.單調(diào)增加B.單調(diào)減少C.為常量D.既非單調(diào),也非常量31.設(shè)y=e-2x,則y'于().A.A.2e-2xB.e-2xC.-2e-2xD.-2e2x
32.
33.
34.設(shè)f(x)在x=0處有二階連續(xù)導(dǎo)數(shù)
則x=0是f(x)的()。
A.間斷點(diǎn)B.極大值點(diǎn)C.極小值點(diǎn)D.拐點(diǎn)35.下列等式中正確的是()。A.
B.
C.
D.
36.過點(diǎn)(0,2,4)且平行于平面x+2x=1,y-3x=2的直線方程為
A.x/1=(y-2)/0=(z-4)/-3.
B.x/0=(y-2)/1=(z-4)/-3
C.x/-2=(y-2)/3=(z-4)/1
D.-2x+3(y-2)+z-4=0
37.
38.
39.設(shè)函數(shù)f(x)=(x-1)(x-2)(x-3),則方程f(x)=0有()。A.一個(gè)實(shí)根B.兩個(gè)實(shí)根C.三個(gè)實(shí)根D.無實(shí)根40.A.A.
B.
C.
D.
二、填空題(50題)41.
42.
43.
44.
45.46.47.設(shè)x=f(x,y)在點(diǎn)p0(x0,y0)可微分,且p0(x0,y0)為z的極大值點(diǎn),則______.
48.
49.微分方程y'+4y=0的通解為_________。
50.51.曲線y=x3—6x的拐點(diǎn)坐標(biāo)為________.
52.
53.________。
54.
55.
56.微分方程xdx+ydy=0的通解是__________。
57.58.59.
60.設(shè)sinx為f(x)的原函數(shù),則f(x)=______.
61.
62.
63.
64.
65.
66.
67.
68.
69.設(shè),則y'=______.70.設(shè)y=sin(2+x),則dy=.71.
72.
20.
73.
74.微分方程y=0的通解為.75.76.77.
78.79.
80.
81.設(shè)區(qū)域D由曲線y=x2,y=x圍成,則二重積分
82.
83.設(shè)y=ex/x,則dy=________。
84.
85.
86.設(shè)y=y(x)是由方程y+ey=x所確定的隱函數(shù),則y'=_________.
87.
88.
89.求微分方程y"-y'-2y=0的通解。
90.
三、計(jì)算題(20題)91.
92.
93.將f(x)=e-2X展開為x的冪級數(shù).94.
95.96.求函數(shù)y=x-lnx的單調(diào)區(qū)間,并求該曲線在點(diǎn)(1,1)處的切線l的方程.97.設(shè)平面薄板所占Oxy平面上的區(qū)域D為1≤x2+y2≤4,x≥0,y≥0,其面密度
u(x,y)=2+y2,求該薄板的質(zhì)量m.98.設(shè)拋物線Y=1-x2與x軸的交點(diǎn)為A、B,在拋物線與x軸所圍成的平面區(qū)域內(nèi),以線段AB為下底作內(nèi)接等腰梯形ABCD(如圖2—1所示).設(shè)梯形上底CD長為2x,面積為
S(x).
(1)寫出S(x)的表達(dá)式;
(2)求S(x)的最大值.
99.求微分方程的通解.100.求曲線在點(diǎn)(1,3)處的切線方程.
101.求微分方程y"-4y'+4y=e-2x的通解.
102.求函數(shù)一的單調(diào)區(qū)間、極值及其曲線的凹凸區(qū)間和拐點(diǎn).103.104.105.研究級數(shù)的收斂性(即何時(shí)絕對收斂,何時(shí)條件收斂,何時(shí)發(fā)散,其中常數(shù)a>0.106.當(dāng)x一0時(shí)f(x)與sin2x是等價(jià)無窮小量,則
107.
108.證明:109.求函數(shù)f(x)=x3-3x+1的單調(diào)區(qū)間和極值.
110.已知某商品市場需求規(guī)律為Q=100e-0.25p,當(dāng)p=10時(shí),若價(jià)格上漲1%,需求量增(減)百分之幾?
四、解答題(10題)111.112.
113.求曲線y=x2、直線y=2-x與x軸所圍成的平面圖形的面積A及該圖形繞y軸旋轉(zhuǎn)所得旋轉(zhuǎn)體的體積Vy。
114.設(shè)拋物線Y=1-x2與x軸的交點(diǎn)為A、B,在拋物線與x軸所圍成的平面區(qū)域內(nèi),以線段AB為下底作內(nèi)接等腰梯形ABCD(如圖2—1所示).設(shè)梯形上底CD長為2x,面積為
S(x).
(1)寫出S(x)的表達(dá)式;
(2)求S(x)的最大值.
115.設(shè)z=x2y+2y2,求dz。116.
確定a,b使得f(x)在x=0可導(dǎo)。
117.
118.
119.
120.
五、高等數(shù)學(xué)(0題)121.
求dy。
六、解答題(0題)122.
參考答案
1.A
2.C解析:
3.C
4.D
5.A由于x2為f(x)的一個(gè)原函數(shù),由原函數(shù)的定義可知f(x)=(x2)'=2x,故選A。
6.B解析:
7.B解析:彼得德魯克最早提出了目標(biāo)管理的思想。
8.D
9.B
10.A為初等函數(shù),定義區(qū)間為,點(diǎn)x=1在該定義區(qū)間內(nèi),因此
故選A.
11.B
12.A
13.A
14.D
15.C
16.D本題考查的知識點(diǎn)為可變限積分求導(dǎo)。由原函數(shù)的定義可知(cos2x)'=ksin2x,而(cos2x)'=(-sin2x)·2,可知k=-2。
17.C本題考查的知識點(diǎn)為函數(shù)連續(xù)性的概念.
18.B
19.D
20.C
21.B
22.A
23.B由導(dǎo)數(shù)的定義可知
可知,故應(yīng)選B。
24.D解析:
25.C
26.D本題考查的知識點(diǎn)為微分運(yùn)算.
可知應(yīng)選D.
27.C
28.C本題考查的知識點(diǎn)為復(fù)合函數(shù)求導(dǎo).
可知應(yīng)選C.
29.B本題考查的知識點(diǎn)為導(dǎo)數(shù)的運(yùn)算.
f(x)=2sinx,
f'(x)=2(sinx)'=2cosx,
可知應(yīng)選B.
30.A由于f(x)在(0,1)內(nèi)有f'(x)>0,可知f(x)在(0,1)內(nèi)單調(diào)增加,故應(yīng)選A.
31.C本題考查的知識點(diǎn)為復(fù)合函數(shù)求導(dǎo).
可知應(yīng)選C.
32.A
33.B
34.C則x=0是f(x)的極小值點(diǎn)。
35.B
36.C本題考查了直線方程的知識點(diǎn).
37.A解析:
38.D
39.B
40.D
41.
本題考查的知識點(diǎn)為極限的運(yùn)算.
若利用極限公式
如果利用無窮大量與無窮小量關(guān)系,直接推導(dǎo),可得
42.
43.本題考查的知識點(diǎn)為偏導(dǎo)數(shù)的運(yùn)算。由于z=x2+3xy+2y2-y,可得
44.33解析:45.e-1/246.1.
本題考查的知識點(diǎn)為導(dǎo)數(shù)的計(jì)算.
47.0本題考查的知識點(diǎn)為二元函數(shù)極值的必要條件.
由于z=f(x,y)在點(diǎn)P0(x0,y0)可微分,P(x0,y0)為z的極值點(diǎn),由極值的必要條件可知
48.63/12
49.y=Ce-4x
50.本題考查的知識點(diǎn)為微分的四則運(yùn)算.
注意若u,v可微,則
51.(0,0).
本題考查的知識點(diǎn)為求曲線的拐點(diǎn).
依求曲線拐點(diǎn)的-般步驟,只需
52.1/21/2解析:53.1
54.[-11)55.0.
本題考查的知識點(diǎn)為定積分的性質(zhì).
積分區(qū)間為對稱區(qū)間,被積函數(shù)為奇函數(shù),因此
56.x2+y2=C
57.058.F(sinx)+C
59.本題考查的知識點(diǎn)為定積分運(yùn)算.
60.cosxcosx解析:本題考查的知識點(diǎn)為原函數(shù)的概念.
由于sinx為f(x)的原函數(shù),因此f(x)=(sinx)'=cosx.61.1
62.1/(1-x)2
63.
解析:
64.
本題考查的知識點(diǎn)為二元函數(shù)的偏導(dǎo)數(shù)計(jì)算.
65.
66.67.
本題考查的知識點(diǎn)為不定積分計(jì)算.
68.
69.解析:本題考查的知識點(diǎn)為導(dǎo)數(shù)的四則運(yùn)算.
70.cos(2+x)dx
這類問題通常有兩種解法.
解法1
因此dy=cos(2+x)dx.
解法2利用微分運(yùn)算公式
dy=d(sin(2+x))=cos(2+x)·d(2+x)=cos(2+x)dx.
71.(-21)(-2,1)
72.
73.00解析:74.y=C.
本題考查的知識點(diǎn)為微分方程通解的概念.
微分方程為y=0.
dy=0.y=C.
75.-1本題考查了洛必達(dá)法則的知識點(diǎn).
76.e-2本題考查了函數(shù)的極限的知識點(diǎn),
77.本題考查的知識點(diǎn)為連續(xù)性與極限的關(guān)系.
由于為初等函數(shù),定義域?yàn)?-∞,0),(0,+∞),點(diǎn)x=2為其定義區(qū)間(0,+∞)內(nèi)的點(diǎn),從而知
78.R
79.
80.-181.本題考查的知識點(diǎn)為計(jì)算二重積分.積分區(qū)域D可以表示為:0≤x≤1,x2≤y≤x,因此
82.
83.
84.
85.
86.1/(1+ey)本題考查了隱函數(shù)的求導(dǎo)的知識點(diǎn)。
87.x2x+3x+C本題考查了不定積分的知識點(diǎn)。
88.
89.
90.91.由一階線性微分方程通解公式有
92.
93.
94.
則
95.
96.
97.由二重積分物理意義知
98.
99.100.曲線方程為,點(diǎn)(1,3)在曲線上.
因此所求曲線方程為或?qū)憺?x+y-5=0.
如果函數(shù)y=f(x)在點(diǎn)x0處的導(dǎo)數(shù)f′(x0)存在,則表明曲線y=f(x)在點(diǎn)
(x0,fx0))處存在切線,且切線的斜率為f′(x0).切線方程為
101.解:原方程對應(yīng)的齊次方程為y"-4y'+4y=0,
102.
列表:
說明
103.
104.
105.
106.由等價(jià)無窮小量的定義可知
107.
108.
109.函數(shù)的定義域?yàn)?/p>
注意
110.需求規(guī)律為Q=100ep-2.25p
∴當(dāng)P=10時(shí)價(jià)格上漲1%需求量減少2.5%需求規(guī)律為Q=100ep-2.25p,
∴當(dāng)P=10時(shí),價(jià)格上漲1%需求量減少2.5%
111.112.解如圖所示,將積分區(qū)域D視作y-型區(qū)域,即
113.
114.
115.本題考查的知識點(diǎn)為計(jì)算二元函數(shù)全微分。
116.
①f(0)=1;f-=(0)=1;+(0)=a+b;∵可導(dǎo)一定連續(xù)∴a+b=1②
∵可導(dǎo)f-"(x)=f+"(x)∴b=-4∴a=5①f(0)=1;f-=(0)=1;+(0)=a+b;∵可導(dǎo)一定連續(xù)∴a+b=1②∵可導(dǎo)f-"(x)=f+"(x)∴b=-4∴a=5①
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 壓縮天然氣場站運(yùn)行工安全生產(chǎn)能力模擬考核試卷含答案
- 耐火配混料工崗前創(chuàng)新思維考核試卷含答案
- 洗衣粉制造工崗前內(nèi)部考核試卷含答案
- 送配電線路工安全文明競賽考核試卷含答案
- 2024年江蘇科技大學(xué)輔導(dǎo)員招聘考試真題匯編附答案
- 化學(xué)農(nóng)藥生產(chǎn)工安全實(shí)操能力考核試卷含答案
- 野生植物采集工操作知識強(qiáng)化考核試卷含答案
- 2025安徽淮南市三和鎮(zhèn)城市社區(qū)專職網(wǎng)格員招聘備考題庫附答案
- 光學(xué)鏡頭裝配調(diào)試工崗前技術(shù)管理考核試卷含答案
- 固堿工安全管理模擬考核試卷含答案
- 2026年榆能集團(tuán)陜西精益化工有限公司招聘備考題庫完整答案詳解
- 2026廣東省環(huán)境科學(xué)研究院招聘專業(yè)技術(shù)人員16人筆試參考題庫及答案解析
- 邊坡支護(hù)安全監(jiān)理實(shí)施細(xì)則范文(3篇)
- 6.1.3化學(xué)反應(yīng)速率與反應(yīng)限度(第3課時(shí) 化學(xué)反應(yīng)的限度) 課件 高中化學(xué)新蘇教版必修第二冊(2022-2023學(xué)年)
- 生產(chǎn)技術(shù)部主要職責(zé)及流程
- 廣東高中高考英語聽說考試故事速記復(fù)述技巧
- GB/T 32065.5-2015海洋儀器環(huán)境試驗(yàn)方法第5部分:高溫貯存試驗(yàn)
- GB/T 20033.3-2006人工材料體育場地使用要求及檢驗(yàn)方法第3部分:足球場地人造草面層
- 2023年牡丹江市林業(yè)系統(tǒng)事業(yè)單位招聘筆試模擬試題及答案解析
- 數(shù)字電子技術(shù)說課課件
- 天然氣加氣站安全事故的案例培訓(xùn)課件
評論
0/150
提交評論