版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
《智能檢測(cè)技術(shù)》教學(xué)參考材料(王偉版)附錄主成分分析、一元線性回歸、多元線性回歸、主成分回歸、偏最小二乘回歸、支持向量機(jī)、偏最小二乘判別、車牌照識(shí)別等算法的MATLAB實(shí)現(xiàn)代碼如下所示:主成分分析:.功能:將高維數(shù)據(jù)映射到低維的空間中,并期望在所投影的維度上數(shù)據(jù)的信息量最大(方差最大),以此使用較少的數(shù)據(jù)維度,同時(shí)保存住較多的原數(shù)據(jù)點(diǎn)。.注解:hald為matlab自帶數(shù)據(jù)集;pea函數(shù)為主成分分析核心函數(shù),其中輸入變量ingredients為nxp矩陣,n為觀測(cè)樣本數(shù),p為變量數(shù),輸出變量coeff為主成分系數(shù),score為主成分分?jǐn)?shù),latent為主成分方差,tsquared為輸入變量的每個(gè)觀測(cè)值的HotellingT方統(tǒng)計(jì)量,explained為每個(gè)主成分解釋的總方差百分比,mu為ingredients中每個(gè)變量的估計(jì)均值;latentO中存放每個(gè)主成分對(duì)應(yīng)貢獻(xiàn)值;繪制主成分分類圖。.代碼:loadhald[coeff,score,latent,tsquared,explained,mu]=pca(ingredients);latentO1OO*latent/sum(latent);figure;scatter3(score(1:4,1),score(1:4,2),score(l:4,3),100,V,Tilled1);holdonscatter3(score(5:8,1),score(5:8,2),score(5:8,3),100,Tilled');holdonscatter3(score(9:13,1),score(9:13,2),score(9:13,3),100,'g;'s;'filled');holdoff一元線性回歸:.功能:由兩個(gè)相關(guān)變量中的一個(gè)變量X估計(jì)另一個(gè)變量y,建立最優(yōu)的數(shù)學(xué)模型y=/(%)。.注解:實(shí)際問(wèn)題引入:社會(huì)商品銷售總額與職工工資總額,建立其回歸模型,設(shè)x為職工工資總額,y為商品銷售總額,建立x—y模型;Linear.fit為擬合函數(shù),m2為建立模型,wlb為方差分析表,y_new為預(yù)測(cè)值,y_newr為預(yù)測(cè)區(qū)間。[r,s]=size(CuDingWeiErZhi);YuJingDingWei=double(CuDingWeiErZhi);X2=zeros(l,s);fori=l:rforj=l:sif(YuJingDingWei(i,j)==1)X2(l,j)=X2(lj)+1;endendend[temp,MaxX]=max(X2);subplot(2,2,2),plot(0:s-l,X2),titleC粗定位車牌圖像列方向像素點(diǎn)值累計(jì)和)xlabelC列值)ylabel(像素);[g,h]=size(YuJingDingWei);ZuoKuanDu=0;YouKuanDu=0;KuanDuYuZhi=5;whilesum(YuJingDingWei(:,ZuoKuanDu+1))—0ZuoKuanDu=ZuoKuanDu4-1;endifZuoKuanDu<KuanDuYuZhiYuJingDingWei(:,[l:ZuoKuanDu])=0;YuJingDingWei=QieGe(YuJingDingWei);endsubplot(2,2,3),imshow(YuJingDingWei),titleC去除左側(cè)邊框的二值車牌圖像')[e,f]=size(YuJingDingWei);d=f;whilesum(YuJingDingWei(:,d-l))^-0YouKuanDu=¥ouKuanDu+1;d=d-l;endifYouKuanDu<KuanDuYuZhiYuJingDingWei(:,[(f-YouKuanDu):f])=0;YuJingDingWei=QieGe(YuJingDingWei);endsubplot(2,2,4),imshow(YuJingDingWei),title,精確定位的車牌二值圖像)ChePaiErZhi=YuJingDingWei;%logical()ChePaiLvBo=bwareaopen(ChePaiErZhi,20);subplot(l,2,1),imshow(ChePaiLvBo),title(形態(tài)學(xué)濾波后的車牌二值圖像)ChePaiYuFenGe=double(ChePaiLvBo);|p,q]=size(ChePaiYuFenGe);X3=zeros(l,q);forj=l:qfori=l:pif(ChePaiYuFenGe(i,j)==1)X3(lj)=X3(l,j)+l;endendendsubplot(1,2,2),plot(0:q-1,X3),titled列方向像素點(diǎn)灰度值累計(jì)和)xlab&C列值)ylabelC累計(jì)像素量)PxO=q;Pxl=q;fori=l:6while((X3(1,Px0)<3)&&(Px0>0))PxO=PxO-l;endPxl=PxO;while(((X3(l,Px1)>=3))&&(Px1>0)||((Px0-Px1)<15))Px1=Px1-1;endChePaiFenGe=ChePaiLvBo(:,Pxl:PxO,:);figure(6);subplot(l,7,8-i);imshow(ChePaiFenGe);ii=int2str(8-i);imwrite(ChePaiFenGe,strcat(ii,,.jpg,));PxO=Px1;endPX3=Pxl;while((X3(1,PX3)<3)&&(PX3>0))PX3=PX3-1;endZiFulDingWei=ChePaiYuFenGe(:,1:PX3,:);subplot(1,7,1);imshow(ZiFuIDingWei);imwrite(ZiFu1DingWei,4.jpg');ZiFul=imresize(-imread(,l.jpg1),[11055],'bilinear');ZiFu2=imresize(-imread(,2.jpg,),[11055],'bilinear');ZiFu3=imresize(-imread(,3.jpg,),[11055],'bilinear');ZiFu4=imresize(-imread(,4.jpg,),[11055],'bilinear');ZiFu5=imresize(-imread(,5.jpg,),[11055],'bilinear');ZiFu6=imresize(-imread(,6.jpg'),[11055],'bilinear');ZiFu7=imresize(^imread(,7.jpg,),[11055],'bilinear');HanZi=DuQuHanZi(imread(,MuBanKu\sichuan.bmp,),imread(,MuBanKu\guizhou.bmp,),imread(,MuBanKu\beijing.bmp'),imread(,MuBanKu\chongqing.bmp,),...imread('MuBanKu\guangdong.bmp'),imreadCMuBanKu\shandong.bmp'),imreadCMuBanKu\zhejiang.bmp'));ShuZiZiMu=DuQuSZZM(imread('MuBanKu\0.bmp'),imread('MuBanKu\l.bmp'),imread('MuBanKu\2.bmp,),imread(,MuBanKu\3.bmp,),imread(,MuBanKu\4.bmp,),...imread('MuBanKu\5.bmp'),imread('MuBanKu\6.bmp'),imread('MuBanKu\7.bmp'),imread('MuBanKu\8.bmp,),imread(,MuBanKu\9.bmp,),...imread('MuBanKu\10.bmp'),imread('MuBanKu\l1.bmp'),imread('MuBanKu\l2.bmp'),imread('MuBanKu\l3.bmp'),imreadCMuBanKu\14.bmp'),…imread(,MuBanKu\15.bmp,),imread(,MuBanKu\16.bmp,),imread(,MuBanKu\17.bmp,),imread(,MuBanKu\l8.bmp1),imread(*MuBanKu\l9.bmp'),...imread('MuBanKu\20,bmp'),imread('MuBanKu\21.bmp'),imreadCMuBanKu\22.bmp'),imread('MuBanKu\23.bmp'),imread('MuBanKu\24.bmp'),??.imread('MuBanKu\25,bmp'),imread('MuBanKu\26.bmp'),imread('MuBanKu\27,bmp'),imread('MuBanKu\28.bmp'),imreadCMuBanKu\29.bmp'),…imread(,MuBanKu\30.bmp,),imread('MuBanKu\31.bmp'),iniread(,MuBanKu\32.bmp,),imread(,MuBanKu\33.bmp'));ZiMu=DuQuZiMu(imread('MuBanKu\10.bmp'),imread('MuBanKu\ll.bmp'),imread('MuBanKu\12?bmp^imreadCMuBanKuM3.bmp1),imreadCMuBanKu\14.bmp'),...imread(,MuBanKu\15.bmp,),imread('MuBanKu\l6.bmp*),imreadC^uBanKuM7.bmp1),imreadC/MuBanKuM8.bmp'),imreadC^uBanKuM9.bmp'),...imread(,MuBanKu\20.bmp,),imread(,MuBanKu\21.bmp'),iniread(,MuBanKu\22.bmp,),imread(,MuBanKu\23.bmp'),imreadCMuBanKu\24.bmp'),?..imread(,MuBanKu\25.bmp,),imread(,MuBanKu\26.bmp'),imread(,MuBanKu\27.bmp'),imread(,MuBanKu\28.bmp'),imreadCMuBanKu\29.bmp'),…imread('MuBanKu\30,bmp'),imread('MuBanKu\31.bmp'),imread('MuBanKu\32.bmp'),imread('MuBanKu\33.bmp*));ShuZi=DuQuShuZi(imread('MuBanKu\0.bmp'),imread('MuBanKu\l.bmp'),imread('MuBanKu\2.bmp'),imread(,MuBanKu\3.bmp,),imreadCMuBanKu\4.bmp'),...imread(,MuBanKu\5.bmp,),imread(,MuBanKu\6.bmp,),imread(,MuBanKu\7.bmp,),imread(,MuBanKu\8.bmp^imreadCMuBanKu\9.bmp1));t=l;ZiFuUieGuo=ShiBieHanZi(HanZi,ZiFu1);ShiBieJieGuo(l,t)=ZiFulJieGuo;t=t+1;ZiFu2JieGuo=ShiBieZiMu(ZiMu,ZiFu2);ShiBieJieGuo(l,t)=ZiFu2JieGuo;t=t+l;ZiFu3JieGuo=ShiBieSZZM(ShuZiZiMu,ZiFu3);ShiBieJieGuo(l,t)=ZiFu3JieGuo;t=t+l;ZiFu4JieGuo=ShiBieSZZM(ShuZiZiMu,ZiFu4);ShiBieJieGuo(l,t)=ZiFu4JieGuo;t=t+1;ZiFu5JieGuo=ShiBieShuZi(ShuZi,ZiFu5);ShiBieJieGuo(1,t)=ZiFu5JieGuo;t=t+1;ZiFu6JieGuo=ShiBieShuZi(ShuZi,ZiFu6);ShiBieJieGuo(1,t)=ZiFu6JieGuo;t=t+1;ZiFu7JieGuo=ShiBieShuZi(ShuZi,ZiFu7);ShiBieJieGuo(1,t)=ZiFu7JieGuo;t=t+1;ShiBieJieGuomsgbox(ShiBieJieGuo;結(jié)果);fid=fopen('Data.xls7a+,);fprintf(fid/%s\r\n',ShiBieJieGuo,datestr(now));fclose(fid);.代碼:x=[23.80,27.60,31.60,32.40,33.70,34.90,43.20,52.80,63.80,73.40];y=[41.4,51.8,61.70,67.90,68.70,77.50,95,90,137.40,155.0,175.0];figureplot(x,y,T*')xlabel('x(職工工資總額)「fontsize',12)ylabelCy(商品零售總額)「fontsize;12)set(gca,linewidth1,2)Lxx=sum((x-mean(x)).A2);Lxy=sum((x-mean(x)).*(y-mean(y)));bl=Lxy/Lxx;b0=mean(y)-b1*mean(x);yl=bl*x+bO;holdonplot(x,yl,linewidth1,2);m2=LinearModel.fit(x,y);m2.plotwlb=m2.anova;Xnew=[23.8;63.8];[y_new,y_newr]=m2.predict(Xnew)多元線性回歸:.功能:因變量的變化往往受幾個(gè)重要因素的影響,并且自變量(Xi,X2,…,Xn)與因變量(y)之間為線性關(guān)系時(shí)一,建立多元線性回歸模型y=b0+瓦%]4-b2x2+…+bnxn,其中外為常數(shù)項(xiàng),瓦,歷,…,一為回歸系數(shù)。.注解:假設(shè)計(jì)算具有常數(shù)項(xiàng)(截距)的模型的系數(shù)估計(jì)值,請(qǐng)?jiān)诰仃嘪中包含一個(gè)由1構(gòu)成的列。regress函數(shù)為多元線性回歸核心函數(shù),其中輸出參數(shù):b為多元線性回歸的系數(shù)估計(jì)值,bint為系數(shù)估計(jì)值的置信邊界下限和置信邊界上限,r為由殘差組成的向量,rint為可用于診斷離群值的區(qū)間,stats為模型統(tǒng)計(jì)量.包含R2統(tǒng)計(jì)量、F統(tǒng)計(jì)量及其p值,以及誤差方差的估計(jì)值,輸入?yún)?shù):y為相應(yīng)矩陣,nXl數(shù)值向量,x為預(yù)測(cè)變量數(shù)據(jù),nXp數(shù)值矩陣。.代碼:clc;clear;y=[7613.517850.918381.869142.8110813.68631.438124.949429.7910230.8110163.619737.568561.067781.827110.97];xl=[76667704814885718679770464715870528938153335292727582591];x2=[16.2216.8517.9317.2817.23171918.2216.313.3711.6210.369.839.25];X=[ones(size(y));xl.A2;x2.A2;xl;x2;xl.*x2];[b,bint,r,rint,stats]=regress(y',X');scatter3(xl,x2,y,Tilled')holdonxlfit=min(xl):100:max(xl);x2fit=min(x2):1:max(x2);[X1FIT,X2HT]=meshgrid(xlfit,x2fit);YFIT=b(l)+b(2)*X1FIT.A2+b(3)*X2FIT.A2+b(4)*X1FIT+b(5)*X2FIT+b(6)*XlFIT.*X2FIT;mesh(XlFIT,X2FIT,YFIT)view(10,10)xlabel(!xr)ylabel('x2')zlabel('y')主成分回歸:.功能:對(duì)回歸模型中的多重共線性進(jìn)行消除后,將主成分變量作為自變量進(jìn)行回歸分析,然后根據(jù)得分系數(shù)矩陣將原變量代回得到的新的模型。.注解:NIR為60個(gè)汽油樣本的401個(gè)波長(zhǎng)的光頻譜強(qiáng)度;octane為對(duì)應(yīng)的辛烷值;PCRmsep為交叉驗(yàn)證選擇主成分?jǐn)?shù);rsquaredPCR為R方值。.代碼:loadspectra[dummy,h]=sort(octane);oldorder二get(gcf,BefaultAxesColorOrder1);set(gcf,'DefaultAxesColorOrdef,jet(60));plot3(repmat(1:401,60,1)\repmat(octane(h),1,401),,NIR(h,:)1);set(gcf,'DefaultAxesColorOrder;oldorder);xlabel(*WavelengthIndex');ylabel('Octane');axis('tight');gridonX=NIR;y=octane;[n,p]=size(X);[PCALoadings,PCAScores,PCAVar]=pca(X,'Economy',false);PCRmsep=sum(crossval(@pcrsse,X,y,KFold1,10),1)/n;plot(0:10,PCRmsep,fr-A,);xlabel(*Numberofcomponents1);ylabel('EstimatedMeanSquaredPredictionError1);legendCPCRVlocationVNE1);betaPCR=regress(y-mean(y),PCAScores(:,l:4));betaPCR=PCALoadings(:,l:4)*betaPCR;betaPCR=[mean(y)-mean(X)*betaPCR;betaPCR];yfitPCR=[ones(nj)X]*betaPCR;plot(y,yfitPCR,YA,);xlabel('ObservedResponse1);ylabel('FittedResponse');legend({*PCRwith4Components1),location1,'NW1);TSS=sum((y-mean(y)).A2);RSS_PCR=sum((y-yfitPCR).A2);rsquaredPCR=1-RSS_PCR/TSS;plot(1:401,PCALoadings(:,1xlabel(,Variable,);ylabel('PCALoading1);legend({'lstComponent1'2ndComponent'3rdComponent'...'4thComponent'}[location;'NW');偏最小二乘回歸:.功能:查找兩個(gè)矩陣(X和Y)的基本關(guān)系,試圖找到X空間的多維方向來(lái)解釋丫空間方差最大的多維方向。偏最小二乘回歸特別適合當(dāng)預(yù)測(cè)矩陣比觀測(cè)的有更多變量,以及X的值中有多重共線性的情況。.注解:加載matlab數(shù)據(jù)spectra,plsrgress函數(shù)中參數(shù)CV=10為10折交叉驗(yàn)證,rsquaredPLS為決定系數(shù),plsrgress函數(shù)輸入?yún)?shù)中,X為預(yù)測(cè)變量,丫為相應(yīng)變量,ncomp為主成分?jǐn)?shù),輸出參數(shù)中XL為預(yù)測(cè)載荷,YL為相應(yīng)載荷,XS為預(yù)測(cè)分?jǐn)?shù),YS為反響分?jǐn)?shù),beta為PLS回歸的系數(shù)估計(jì),pctVar為方差百分比,PLSmsep為均方誤差。.代碼:loadspectra[dummy,h]=sort(octane);oldorder=get(gcf,^efaultAxesColorOrder*);set(gcf,'DefaultAxesColorOrdef,jet(60));plot3(repmat(l:401,60,l)\repmat(octane(h),1,401)\NIR(h,:)t);set(gcf,'DefaultAxesColorOrder;oldorder);xlabel(!WavelengthIndex');ylabelCOctane1);axis('tightf);gridonX=NIR;y=octane;[n,p]=size(X);[XI,YI,Xs,Ys,beta,pctVar,PLSmsep]=plsregress(X,y,10,'CV;10);plot(0:10,PLSmsep(2,:),'b-o');xlabel(fNumberofcomponents');ylabel('EstimatedMeanSquaredPredictionError*);legendCPLSR;location1,NE);[Xloadings,Yloadings,Xscores,Yscores,betaPLS]=plsregress(X,y,3);yfitPLS=|ones(n,l)X]*betaPLS;plot(y,yfitPLS,'bo*);xlabel('ObservedResponse1);ylabel('FittedResponse');legend({PLSRwith3Components'},'location*,,NW1);TSS=sum((y-mean(y)).A2);RSS_PLS=sum((y-yfitPLS).A2);rsquaredPLS=1-RSS_PLS/TSS;[XI,Yl,Xs,Ys,beta,pctVar,mse,stats]=plsregress(X,y,3);plot(l:401,stats.W/-1);xlabel(!Variable1);ylabel(PLSWeight1);legend({'lstComponent*'2ndComponent'3rdComponent'),'location*,'NW1);支持向量機(jī):.功能:通過(guò)別離超平面把原始樣本集進(jìn)行分類。.注解:加載Fisher的虹膜數(shù)據(jù)集,將Y中的80%作為訓(xùn)練集,20%為測(cè)試集,fitcsvm為模型訓(xùn)練,predict為預(yù)測(cè)函數(shù),errRate為分類錯(cuò)誤率,conMat為混淆矩陣。.代碼:loadfisheririsX=[meas(:,1),meas(:,2)];Y=nominal(ismember(species,^etosa'));P=cvpartition(Y,'Holdout1,0.20);svmStruct=fitcsvm(X(P.training,:),Y(P.training));C=predict(svmStruct,X(P.test,:));errRate=sum(Y(P.test)-=C)/P.TestSize;conMat=confusionmat(Y(P.test),C);偏最小二乘判別:.功能:用于判別分析的多變量統(tǒng)計(jì)分析方法,可以減少變量間多重共線性產(chǎn)生的影響.注解:加載紅酒數(shù)據(jù),并劃分訓(xùn)練集與驗(yàn)證集,交叉驗(yàn)證選擇最優(yōu)主成分,plsdafit為模型訓(xùn)練函數(shù),model為建立的模型,accuracy_train為訓(xùn)練集準(zhǔn)確率,accuracy_test為測(cè)試集準(zhǔn)確率。.代碼:clear;clc;[data,label]=wine_dataset;labels=mod(find(laber==1),3);data二data';num_test=78;[ndata,D]=size(data);R=randperm(ndata);test_X=data(R(l:num_test),:);test_Y=labels(R(1:num_test),:);test_Y=double(test_Y);R(l:num_test)=[];train_X=data(R,:);num_train=size(train_X,l);train_Y=labels(R,:);train_Y=double(train_Y);res=plsdacompsel(train_X,train_Y,'meancentering'/venetianblinds1,10,'max');accuracy_cv=max(res.ner);comp=find(res.ner=max(res.ner));model=plsdafit(train_X,train_Y,comp(1,1),'meancentering7max\l);accuracy_train=model.class_param.accuracy;pred=plsdapred(test_X,model);test_result」abel二pred.class_pred;test_param=calc_class_param(test_result_label,test_Y);accuracy_test=test_param.accuracy;車牌號(hào)碼識(shí)別:.功能:實(shí)現(xiàn)對(duì)含有車牌的圖片進(jìn)行自動(dòng)車牌號(hào)碼提取。.注解:首先進(jìn)行車牌區(qū)域粗定位,對(duì)車牌區(qū)域進(jìn)行字符分割,并使用字符數(shù)字模板庫(kù)進(jìn)行車牌號(hào)碼識(shí)別,實(shí)現(xiàn)車牌號(hào)碼檢測(cè)。.代碼:closeall;clc;[fn,pn,fi]=uigetfHe('ChePaiKu\*.jpg?選擇圖片');YuanShi=imread([pnfn]);figure(1);subplot(3,2,1),imshow(YuanShi),title('原始圖像');YuanShiHuiDu=rgb2gray(YuanShi);subplot(3,2,2),imshow(YuanShiHuiDu),title,灰度圖像,);BianYuan=edge(YuanShiHuiDu,'canny',0.5);subplot?,2,3),imshow(BianYuan),title(!Canny算子邊緣檢測(cè)后圖像');sel=[l;l;l];FuShi=imerode(BianYuan,sei);subplot(3,2,4),imshow(FuShi),t
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 2026年綠源環(huán)保餐具科技公司新技術(shù)研發(fā)管理制度
- 中東呼吸綜合征冠狀病毒-Middle-East-Respiratory
- 第六單元專題學(xué)習(xí)活動(dòng)《身邊的文化遺產(chǎn)》課件+2025-2026學(xué)年統(tǒng)編版語(yǔ)文八年級(jí)上冊(cè)
- 無(wú)限極培訓(xùn)教學(xué)課件
- 籃球培訓(xùn)營(yíng)教學(xué)課件
- 膽囊彩超培訓(xùn)課件
- 珍禽養(yǎng)殖技術(shù)培訓(xùn)課件
- 2026年汽車碳管理培訓(xùn)體系培訓(xùn)
- 2026年地鐵運(yùn)營(yíng)優(yōu)化培訓(xùn)
- 企業(yè)信息安全管理制度執(zhí)行執(zhí)行執(zhí)行手冊(cè)(標(biāo)準(zhǔn)版)
- 吉林省梅河口市五中2025-2026學(xué)年高二上學(xué)期期末語(yǔ)文試卷及答案
- 2026年張家界航空工業(yè)職業(yè)技術(shù)學(xué)院?jiǎn)握新殬I(yè)傾向性考試模擬測(cè)試卷新版
- 2026遼寧機(jī)場(chǎng)管理集團(tuán)校招面筆試題及答案
- 2026年共青團(tuán)中央所屬單位高校畢業(yè)生公開招聘66人備考題庫(kù)及參考答案詳解
- 2025徽銀金融租賃有限公司社會(huì)招聘筆試歷年典型考題及考點(diǎn)剖析附帶答案詳解
- 2026年遼寧軌道交通職業(yè)學(xué)院?jiǎn)握芯C合素質(zhì)筆試備考題庫(kù)帶答案解析
- 2026年6級(jí)英語(yǔ)模擬真題及答案
- 2025內(nèi)蒙古鄂爾多斯市委政法委所屬事業(yè)單位引進(jìn)高層次人才3人考試題庫(kù)含答案解析(奪冠)
- 2025年全國(guó)單獨(dú)招生考試綜合試卷(附答案) 完整版2025
- 2025-2026學(xué)年外研版八年級(jí)上冊(cè)英語(yǔ)期末模擬考試題(含答案)
- 高密度聚乙烯(HDPE)排水管(八角雙密封)
評(píng)論
0/150
提交評(píng)論