2023年浙江省臺(tái)州市成考專(zhuān)升本高等數(shù)學(xué)一自考真題(含答案)_第1頁(yè)
2023年浙江省臺(tái)州市成考專(zhuān)升本高等數(shù)學(xué)一自考真題(含答案)_第2頁(yè)
2023年浙江省臺(tái)州市成考專(zhuān)升本高等數(shù)學(xué)一自考真題(含答案)_第3頁(yè)
2023年浙江省臺(tái)州市成考專(zhuān)升本高等數(shù)學(xué)一自考真題(含答案)_第4頁(yè)
2023年浙江省臺(tái)州市成考專(zhuān)升本高等數(shù)學(xué)一自考真題(含答案)_第5頁(yè)
已閱讀5頁(yè),還剩33頁(yè)未讀 繼續(xù)免費(fèi)閱讀

付費(fèi)下載

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

2023年浙江省臺(tái)州市成考專(zhuān)升本高等數(shù)學(xué)一自考真題(含答案)學(xué)校:________班級(jí):________姓名:________考號(hào):________

一、單選題(50題)1.A.A.2B.1C.0D.-1

2.設(shè)y=sinx,則y'|x=0等于().A.1B.0C.-1D.-2

3.方程x2+2y2-z2=0表示的曲面是A.A.橢球面B.錐面C.柱面D.平面

4.A.0B.2C.2f(-1)D.2f(1)

5.設(shè)函數(shù)z=y3x,則等于().A.A.y3xlny

B.3y3xlny

C.3xy3x

D.3xy3x-1

6.

7.

8.

9.

10.

11.

12.

13.

14.f(x)是可積的偶函數(shù),則是()。A.偶函數(shù)B.奇函數(shù)C.非奇非偶D.可奇可偶15.A.A.0B.1C.2D.3

16.

17.

18.

19.A.sin(2x-1)+C

B.

C.-sin(2x-1)+C

D.

20.

A.

B.1

C.2

D.+∞

21.

22.

23.

24.在空間直角坐標(biāo)系中,方程x+z2=z的圖形是A.A.圓柱面B.圓C.拋物線D.旋轉(zhuǎn)拋物面25.對(duì)于微分方程y"-2y'+y=xex,利用待定系數(shù)法求其特解y*時(shí),下列特解設(shè)法正確的是()。A.y*=(Ax+B)ex

B.y*=x(Ax+B)ex

C.y*=Ax3ex

D.y*=x2(Ax+B)ex

26.微分方程y''-2y=ex的特解形式應(yīng)設(shè)為()。A.y*=Aex

B.y*=Axex

C.y*=2ex

D.y*=ex

27.

28.A.0B.1C.2D.任意值29.設(shè)平面則平面π1與π2的關(guān)系為().A.A.平行但不重合B.重合C.垂直D.既不平行,也不垂直

30.力偶對(duì)剛體產(chǎn)生哪種運(yùn)動(dòng)效應(yīng)()。

A.既能使剛體轉(zhuǎn)動(dòng),又能使剛體移動(dòng)B.與力產(chǎn)生的運(yùn)動(dòng)效應(yīng)有時(shí)候相同,有時(shí)不同C.只能使剛體轉(zhuǎn)動(dòng)D.只能使剛體移動(dòng)

31.

32.

33.設(shè)y=x2-e2,則y=

A.2x-2e

B.2x-e2

C.2x-e

D.2x

34.方程x2+2y2+3z2=1表示的二次曲面是

A.圓錐面B.旋轉(zhuǎn)拋物面C.球面D.橢球面35.A.-cosxB.-ycosxC.cosxD.ycosx36.A.

B.

C.

D.

37.

38.39.

()A.x2

B.2x2

C.xD.2x40.微分方程y'+y=0的通解為y=A.e-x+C

B.-e-x+C

C.Ce-x

D.Cex

41.設(shè)y=2-x,則y'等于()。A.2-xx

B.-2-x

C.2-xln2

D.-2-xln2

42.A.A.

B.x2

C.2x

D.2

43.函數(shù)y=ex+e-x的單調(diào)增加區(qū)間是

A.(-∞,+∞)B.(-∞,0]C.(-1,1)D.[0,+∞)44.A.A.Ax

B.

C.

D.

45.

46.

47.

48.圖示結(jié)構(gòu)中,F(xiàn)=10N,I為圓桿,直徑d=15mm,2為正方形截面桿,邊長(zhǎng)為a=20mm,α=30。,則各桿強(qiáng)度計(jì)算有誤的一項(xiàng)為()。

A.1桿受拉20kNB.2桿受壓17.3kNC.1桿拉應(yīng)力50MPaD.2桿壓應(yīng)力43.3MPa

49.

50.設(shè)f(x)為區(qū)間[a,b]上的連續(xù)函數(shù),則曲線y=f(x)與直線x=a,x=b,y=0所圍成的封閉圖形的面積為()。A.

B.

C..

D.不能確定

二、填空題(20題)51.

52.設(shè)f(x,y)=x+(y-1)arcsinx,則f'x(x,1)=__________。

53.設(shè)y=f(x)在點(diǎn)x0處可導(dǎo),且在點(diǎn)x0處取得極小值,則曲線y=f(x)在點(diǎn)(x0,f(x0))處的切線方程為_(kāi)_______。

54.

55.

56.

57.

58.

59.

60.

61.函數(shù)在x=0連續(xù),此時(shí)a=______.

62.63.

64.

65.

66.67.設(shè),則y'=________。

68.

69.

70.

三、計(jì)算題(20題)71.72.求微分方程的通解.73.研究級(jí)數(shù)的收斂性(即何時(shí)絕對(duì)收斂,何時(shí)條件收斂,何時(shí)發(fā)散,其中常數(shù)a>0.

74.已知某商品市場(chǎng)需求規(guī)律為Q=100e-0.25p,當(dāng)p=10時(shí),若價(jià)格上漲1%,需求量增(減)百分之幾?

75.

76.求微分方程y"-4y'+4y=e-2x的通解.

77.證明:

78.

79.當(dāng)x一0時(shí)f(x)與sin2x是等價(jià)無(wú)窮小量,則80.

81.求函數(shù)y=x-lnx的單調(diào)區(qū)間,并求該曲線在點(diǎn)(1,1)處的切線l的方程.82.設(shè)平面薄板所占Oxy平面上的區(qū)域D為1≤x2+y2≤4,x≥0,y≥0,其面密度

u(x,y)=2+y2,求該薄板的質(zhì)量m.83.84.求函數(shù)f(x)=x3-3x+1的單調(diào)區(qū)間和極值.85.將f(x)=e-2X展開(kāi)為x的冪級(jí)數(shù).86.求函數(shù)一的單調(diào)區(qū)間、極值及其曲線的凹凸區(qū)間和拐點(diǎn).87.

88.

89.求曲線在點(diǎn)(1,3)處的切線方程.90.設(shè)拋物線Y=1-x2與x軸的交點(diǎn)為A、B,在拋物線與x軸所圍成的平面區(qū)域內(nèi),以線段AB為下底作內(nèi)接等腰梯形ABCD(如圖2—1所示).設(shè)梯形上底CD長(zhǎng)為2x,面積為

S(x).

(1)寫(xiě)出S(x)的表達(dá)式;

(2)求S(x)的最大值.

四、解答題(10題)91.

92.93.94.95.在第Ⅰ象限內(nèi)的曲線上求一點(diǎn)M(x,y),使過(guò)該點(diǎn)的切線被兩坐標(biāo)軸所截線段的長(zhǎng)度為最?。?/p>

96.(本題滿分10分)

97.

98.

99.

100.求微分方程y"+9y=0的通解。

五、高等數(shù)學(xué)(0題)101.設(shè)生產(chǎn)某產(chǎn)品利潤(rùn)L(x)=5000+x一0.0001x2百元[單位:件],問(wèn)生產(chǎn)多少件時(shí)利潤(rùn)最大,最大利潤(rùn)是多少?

六、解答題(0題)102.在曲線y=x2(x≥0)上某點(diǎn)A(a,a2)處作切線,使該切線與曲線及x軸所圍成的圖形的面積為1/12.試求:(1)切點(diǎn)A的坐標(biāo)((a,a2).(2)過(guò)切點(diǎn)A的切線方程.

參考答案

1.Df(x)為分式,當(dāng)x=-1時(shí),分母x+1=0,分式?jīng)]有意義,因此點(diǎn)

x=-1為f(x)的間斷點(diǎn),故選D。

2.A由于

可知應(yīng)選A.

3.B

4.C本題考查了定積分的性質(zhì)的知識(shí)點(diǎn)。

5.D本題考查的知識(shí)點(diǎn)為偏導(dǎo)數(shù)的計(jì)算.

z=y3x

是關(guān)于y的冪函數(shù),因此

故應(yīng)選D.

6.A

7.B

8.A解析:

9.C

10.A

11.D解析:

12.D

13.C解析:

14.Bf(x)是可積的偶函數(shù);設(shè)令t=-u,是奇函數(shù)。

15.B

16.D

17.B

18.A

19.B本題考查的知識(shí)點(diǎn)為不定積分換元積分法。

因此選B。

20.C

21.A解析:

22.D

23.C

24.A

25.D特征方程為r2-2r+1=0,特征根為r=1(二重根),f(x)=xex,α=1為特征根,因此原方程特解y*=x2(Ax+B)ex,因此選D。

26.A由方程知,其特征方程為,r2-2=0,有兩個(gè)特征根r=±.又自由項(xiàng)f(x)=ex,λ=1不是特征根,故特解y*可設(shè)為Aex.

27.D

28.B

29.C本題考查的知識(shí)點(diǎn)為兩平面的位置關(guān)系.

由于平面π1,π2的法向量分別為

可知n1⊥n2,從而π1⊥π2.應(yīng)選C.

30.A

31.D解析:

32.C

33.D

34.D本題考查了二次曲面的知識(shí)點(diǎn)。

35.C本題考查的知識(shí)點(diǎn)為二階偏導(dǎo)數(shù)。由于z=y(tǒng)sinx,因此可知應(yīng)選C。

36.D本題考查的知識(shí)點(diǎn)為牛頓一萊布尼茨公式和定積分的換元法。因此選D。

37.B

38.C

39.A

40.C

41.D本題考查的知識(shí)點(diǎn)為復(fù)合函數(shù)求導(dǎo)數(shù)的鏈?zhǔn)椒▌t。由于y=2-xY'=2-x·ln2·(-x)'=-2-xln2.考生易錯(cuò)誤選C,這是求復(fù)合函數(shù)的導(dǎo)數(shù)時(shí)丟掉項(xiàng)而造成的!因此考生應(yīng)熟記:若y=f(u),u=u(x),則

不要丟項(xiàng)。

42.D本題考查的知識(shí)點(diǎn)為原函數(shù)的概念.

可知應(yīng)選D.

43.D考查了函數(shù)的單調(diào)區(qū)間的知識(shí)點(diǎn).

y=ex+e-x,則y'=ex-e-x,當(dāng)x>0時(shí),y'>0,所以y在區(qū)間[0,+∞)上單調(diào)遞增。

44.D

45.D

46.B

47.B

48.C

49.A解析:

50.B本題考查的知識(shí)點(diǎn)為定積分的幾何意義。由定積分的幾何意義可知應(yīng)選B。常見(jiàn)的錯(cuò)誤是選C。如果畫(huà)個(gè)草圖,則可以避免這類(lèi)錯(cuò)誤。

51.

52.1

53.y=f(x0)y=f(x)在點(diǎn)x0處可導(dǎo),且y=f(x)有極小值f(x0),這意味著x0為f(x)的極小值點(diǎn)。由極值的必要條件可知,必有f"(x0)=0,因此曲線y=f(x)在點(diǎn)(x0,f(x0))處的切線方程為y-f(x0)=f(x0)(x-x0)=0,即y=f(x0)為所求切線方程。

54.

解析:55.0.

本題考查的知識(shí)點(diǎn)為連續(xù)函數(shù)在閉區(qū)間上的最小值問(wèn)題.

通常求解的思路為:

56.

57.

58.

59.

解析:

60.ee解析:

61.062.2本題考查的知識(shí)點(diǎn)為極限運(yùn)算.

由于所給極限為“”型極限,由極限四則運(yùn)算法則有

63.本題考查了交換積分次序的知識(shí)點(diǎn)。

64.

65.

66.

67.

68.

69.2/52/5解析:

70.0

71.

72.

73.

74.需求規(guī)律為Q=100ep-2.25p

∴當(dāng)P=10時(shí)價(jià)格上漲1%需求量減少2.5%需求規(guī)律為Q=100ep-2.25p,

∴當(dāng)P=10時(shí),價(jià)格上漲1%需求量減少2.5%75.由一階線性微分方程通解公式有

76.解:原方程對(duì)應(yīng)的齊次方程為y"-4y'+4y=0,

77.

78.

79.由等價(jià)無(wú)窮小量的定義可知

80.

81.

82.由二重積分物理意義知

83.84.函數(shù)的定義域?yàn)?/p>

注意

85.

86.

列表:

說(shuō)明

87.

88.89.曲線方程為,點(diǎn)(1,3)在曲線上.

因此所求曲線方程為或?qū)憺?x+y-5=0.

如果函數(shù)y=f(x)在點(diǎn)x0處的導(dǎo)數(shù)f′(x0)存在,則表明曲線y=f(x)在點(diǎn)

(x0,fx0))處存在切線,且切線的斜率為f′(x0).切線方程為

90.

91.

92.

93.

94.

95.本題考查的知識(shí)點(diǎn)為函數(shù)的最大值、最小值應(yīng)用題.

這類(lèi)問(wèn)題的關(guān)鍵是先依條件和題中要求,建立數(shù)學(xué)模型.

依題目要求需求的最小值.由于L為根式,為了簡(jiǎn)化運(yùn)算,可以考慮L2的最小值.這是應(yīng)該學(xué)習(xí)的技巧.

96.本題考查的知識(shí)點(diǎn)為求解二階線性常系數(shù)非齊次微分方程.

相應(yīng)的齊次微分方程為

代入原方程可得

原方程的通解為

【解題指導(dǎo)】

由二階線性常系數(shù)非齊次微分方程解的結(jié)構(gòu)定理可知,其通解y=相應(yīng)齊次方程的通解Y+非齊次方程的-個(gè)特解y*.

其中Y可以通過(guò)求解特征方程得特征根而求出.而y*可以利用待定系數(shù)法求解.

97.

98.

99.由題意知,使f(x)不成立的x值,均為f(x)的間斷點(diǎn).故sin(x-3)=0或x-3=0時(shí)f(x)無(wú)意義,則間斷點(diǎn)為x-3=kπ(k=0,±1,±2…)即x=3+kπ(k=0,±1,±2…)

100.y"+9y=0的特征方程為r2+9=0特征值為r12=±3i故通解為y=C1cos3x+C2sin3x。y"+9y=0的特征方程為r2+9=0,特征值為r1,2=±3i,故通解為y=C1cos3x+C2sin3x。

101.L(x)=5000+x一0.0001x2L"(x)=1—0.0002x=0:x=5000;L""(x)=一0.0002<0∴x=5000取極大值L(5000)=7500答:生產(chǎn)5000件時(shí)利潤(rùn)最大最大利潤(rùn)是7500(百元)。L(x)=5000+x一0.0001x2L"(x)=1—0.0002x=0:x=5000;L""(x)=一0.0002<0∴x=5000取極大值L(

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

最新文檔

評(píng)論

0/150

提交評(píng)論