版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
2023年四川省達(dá)州市普通高校對口單招數(shù)學(xué)自考測試卷(含答案)學(xué)校:________班級:________姓名:________考號:________
一、單選題(20題)1.正方形ABCD的邊長為12,PA丄平面ABCD,PA=12,則點(diǎn)P到對角線BD的距離為()A.12
B.12
C.6
D.6
2.設(shè)AB是拋物線上的兩點(diǎn),O為原點(diǎn),OA丄OB,A點(diǎn)的橫坐標(biāo)是-1,則B點(diǎn)的橫坐標(biāo)為()A.lB.4C.8D.16
3.在等差數(shù)列{an}中,如果a3+a4+a5+a6+a7+a8=30,則數(shù)列的前10項(xiàng)的和S10為()A.30B.40C.50D.60
4.設(shè)集合,則A與B的關(guān)系是()A.
B.
C.
D.
5.拋物線y=2x2的準(zhǔn)線方程為()A.y=-1/8B.y=-1/4C.y=-1/2D.y=-1
6.圓(x+1)2+y2=2的圓心到直線y=x+3的距離為A.1
B.2
C.
D.2
7.下列函數(shù)中是偶函數(shù)的是()A.y=x|x|B.y=sinx|x|C.y=x2+1D.y=xsinx+cosx
8.已知函數(shù)f(x)為奇函數(shù),且當(dāng)x>0時(shí),f(x)=x2+1/x,則f(-1)=()A.2B.1C.0D.-2
9.己知向量a=(3,-2),b=(-1,1),則3a+2b
等于()A.(-7,4)B.(7,4)C.(-7,-4)D.(7,-4)
10.若f(x)=ax2+bx(ab≠0),且f(2)=f(3),則f(5)等于()A.1B.-1C.0D.2
11.已知等差數(shù)列{an}的前n項(xiàng)和為Sn,a4=2,S10=10,則a7的值為()A.0B.1C.2D.3
12.設(shè)i是虛數(shù)單位,若z/i=(i-3)/(1+i)則復(fù)數(shù)z的虛部為()A.-2B.2C.-1D.1
13.“沒有公共點(diǎn)”是“兩條直線異面”的()A.充分而不必要條件B.充分必要條件C.必要而不充分條件D.既不充分也不必要條件
14.以坐標(biāo)軸為對稱軸,離心率為,半長軸為3的橢圓方程是()A.
B.或
C.
D.或
15.直線以互相平行的一個(gè)充分條件為()A.以都平行于同一個(gè)平面
B.與同一平面所成角相等
C.平行于所在平面
D.都垂直于同一平面
16.函數(shù)的定義域()A.[3,6]B.[-9,1]C.(-∞,3]∪[6,+∞)D.(-∞,+∞)
17.將三名教師排列到兩個(gè)班任教的安排方案數(shù)為()A.5B.6C.8D.9
18.有四名高中畢業(yè)生報(bào)考大學(xué),有三所大學(xué)可供選擇,每人只能填報(bào)一所大學(xué),則報(bào)考的方案數(shù)為()A.
B.
C.
D.
19.橢圓的焦點(diǎn)坐標(biāo)是()A.(,0)
B.(±7,0)
C.(0,±7)
D.(0,)
20.如下圖所示,轉(zhuǎn)盤上有8個(gè)面積相等的扇形,轉(zhuǎn)動(dòng)轉(zhuǎn)盤,則轉(zhuǎn)盤停止轉(zhuǎn)動(dòng)時(shí),指針落在陰影部分的概率為()A.1/8B.1/4C.3/8D.1/2
二、填空題(10題)21.若事件A與事件互為對立事件,則_____.
22.執(zhí)行如圖所示的流程圖,則輸出的k的值為_______.
23.若事件A與事件ā互為對立事件,且P(ā)=P(A),則P(ā)=
。
24.若長方體的長、寬、高分別為1,2,3,則其對角線長為
。
25.有一長為16m的籬笆要圍成一個(gè)矩形場地,則矩形場地的最大面積是________m2.
26.
27.函數(shù)的定義域是_____.
28.甲,乙兩人向一目標(biāo)射擊一次,若甲擊中的概率是0.6,乙的概率是0.9,則兩人都擊中的概率是_____.
29.函數(shù)f(x)=sin(x+φ)-2sinφcosx的最大值為_____.
30.要使的定義域?yàn)橐磺袑?shí)數(shù),則k的取值范圍_____.
三、計(jì)算題(10題)31.己知{an}為等差數(shù)列,其前n項(xiàng)和為Sn,若a3=6,S3=12,求公差d.
32.(1)求函數(shù)f(x)的定義域;(2)判斷函數(shù)f(x)的奇偶性,并說明理由。
33.設(shè)函數(shù)f(x)既是R上的減函數(shù),也是R上的奇函數(shù),且f(1)=2.(1)求f(-1)的值;(2)若f(t2-3t+1)>-2,求t的取值范圍.
34.已知函數(shù)y=cos2x+3sin2x,x∈R求:(1)函數(shù)的值域;(2)函數(shù)的最小正周期。
35.在等差數(shù)列{an}中,前n項(xiàng)和為Sn
,且S4
=-62,S6=-75,求等差數(shù)列{an}的通項(xiàng)公式an.
36.解不等式4<|1-3x|<7
37.近年來,某市為了促進(jìn)生活垃圾的分類處理,將生活垃圾分為“廚余垃圾”、“可回收垃圾”、“有害垃圾”和“其他垃圾”等四類,并分別垛置了相應(yīng)的垃圾箱,為調(diào)查居民生活垃圾的正確分類投放情況,現(xiàn)隨機(jī)抽取了該市四類垃圾箱總計(jì)100噸生活垃圾,數(shù)據(jù)統(tǒng)計(jì)如下(單位:噸):(1)試估計(jì)“可回收垃圾”投放正確的概率;(2)試估計(jì)生活垃圾投放錯(cuò)誤的概率。
38.求焦點(diǎn)x軸上,實(shí)半軸長為4,且離心率為3/2的雙曲線方程.
39.甲、乙兩人進(jìn)行投籃訓(xùn)練,己知甲投球命中的概率是1/2,乙投球命中的概率是3/5,且兩人投球命中與否相互之間沒有影響.(1)若兩人各投球1次,求恰有1人命中的概率;(2)若兩人各投球2次,求這4次投球中至少有1次命中的概率.
40.有四個(gè)數(shù),前三個(gè)數(shù)成等差數(shù)列,公差為10,后三個(gè)數(shù)成等比數(shù)列,公比為3,求這四個(gè)數(shù).
四、簡答題(10題)41.已知函數(shù):,求x的取值范圍。
42.如圖,在直三棱柱中,已知(1)證明:AC丄BC;(2)求三棱錐的體積.
43.求過點(diǎn)P(2,3)且被兩條直線:3x+4y-7=0,:3x+4y+8=0所截得的線段長為的直線方程。
44.設(shè)拋物線y2=4x與直線y=2x+b相交A,B于兩點(diǎn),弦AB長,求b的值
45.設(shè)函數(shù)是奇函數(shù)(a,b,c∈Z)且f(1)=2,f(2)<3.(1)求a,b,c的值;(2)當(dāng)x<0時(shí),判斷f(x)的單調(diào)性并加以證明.
46.在1,2,3三個(gè)數(shù)字組成無重復(fù)數(shù)字的所有三位數(shù)中,隨機(jī)抽取一個(gè)數(shù),求:(1)此三位數(shù)是偶數(shù)的概率;(2)此三位數(shù)中奇數(shù)相鄰的概率.
47.如圖,四棱錐P-ABCD中,PA丄底面ABCD,AB//CD,AD=CD=1,BAD=120°,PA=,ACB=90°。(1)求證:BC丄平面PAC。(2)求點(diǎn)B到平面PCD的距離。
48.等比數(shù)列{an}的前n項(xiàng)和Sn,已知S1,S3,S2成等差數(shù)列(1)求數(shù)列{an}的公比q(2)當(dāng)a1-a3=3時(shí),求Sn
49.由三個(gè)正數(shù)組成的等比數(shù)列,他們的倒數(shù)和是,求這三個(gè)數(shù)
50.已知cos=,,求cos的值.
五、解答題(10題)51.在銳角△ABC中,內(nèi)角A,B,C所對的邊分別是a,b,c(1)求c的值;(2)求sinA的值.
52.如圖,在四棱錐P-ABCD中,底面是正方形,PD⊥平面ABCD,且PD=AD.(1)求證:PA⊥CD;(2)求異面直線PA與BC所成角的大小.
53.已知橢圓的兩焦點(diǎn)為F1(-1,0),F2(1,0),P為橢圓上的一點(diǎn),且2|F1F2|PF1|+|PF2|.(1)求此橢圓的標(biāo)準(zhǔn)方程;(2)若點(diǎn)P在第二象限,∠F2F1P=120°,求△PF1F2的面積.
54.已知直線經(jīng)過橢圓C:x2/a2+y2/b2=1(a>b>0)的一個(gè)頂點(diǎn)B和一個(gè)焦點(diǎn)F.(1)求橢圓的離心率;(2)設(shè)P是橢圓C上動(dòng)點(diǎn),求|PF|-|PB|的取值范圍,并求|PF|-|PB||取最小值時(shí)點(diǎn)P的坐標(biāo).
55.
56.
57.已知等差數(shù)列{an}的公差為2,其前n項(xiàng)和Sn=pnn+2n,n∈N(1)求p的值及an;(2)在等比數(shù)列{bn}中,b3=a1,b4=a2+4,若{bn}的前n項(xiàng)和為Tn,求證:數(shù)列{Tn+1/6}為等比數(shù)列.
58.如圖,在三棱錐A-BCD中,AB丄平面BCD,BC丄BD,BC=3,BD=4,直線AD與平面BCD所成的角為45°點(diǎn)E,F(xiàn)分別是AC,AD的中點(diǎn).(1)求證:EF//平面BCD;(2)求三棱錐A-BCD的體積.
59.已知橢圓的中心為原點(diǎn),焦點(diǎn)在x軸上,離心率為,且經(jīng)過點(diǎn)M(4,1),直線l:y=x+m交橢圓于異于M的不同兩點(diǎn)A,B直線MA,MB與x軸分別交于點(diǎn)E,F(xiàn).(1)求橢圓的標(biāo)準(zhǔn)方程;(2)求m的取值范圍.
60.已知A,B分別是橢圓的左右兩個(gè)焦點(diǎn),o為坐標(biāo)的原點(diǎn),點(diǎn)P(-1,)在橢圓上,線段PB與y軸的焦點(diǎn)M為線段PB的中心點(diǎn),求橢圓的標(biāo)準(zhǔn)方程
六、單選題(0題)61.已知拋物線方程為y2=8x,則它的焦點(diǎn)到準(zhǔn)線的距離是()A.8B.4C.2D.6
參考答案
1.D
2.D
3.C
4.A
5.A
6.C點(diǎn)到直線的距離公式.圓(x+l)2+y2=2的圓心坐標(biāo)為(-1,0),由y=x+3得x-y+3=0,則圓心到直線的距離d=
7.D
8.D函數(shù)的奇偶性.由題意得f(-1)=-f(1)=-(1+1)=-2
9.D
10.C
11.A
12.C復(fù)數(shù)的運(yùn)算及定義.
13.C
14.B由題意可知,焦點(diǎn)在x軸或y軸上,所以標(biāo)準(zhǔn)方程有兩個(gè),而a=3,c/a=1/3,所以c=1,b2=8,因此答案為B。
15.D根據(jù)直線與平面垂直的性質(zhì)定理,D正確。
16.A
17.B
18.C
19.D
20.D本題考查幾何概型概率的計(jì)算。陰影部分的面積為圓面的一半,由幾何概型可知P=1/2。
21.1有對立事件的性質(zhì)可知,
22.5程序框圖的運(yùn)算.由題意,執(zhí)行程序框圖,可得k=1,S=1,S=3,k=2不滿足條件S>16,S=8,k=3不滿足條件S>16,S=16,k=4不滿足條件S>16,S=27,k=5滿足條件S>16,退出循環(huán),輸出k的值為5.故答案為:5.
23.0.5由于兩個(gè)事件是對立事件,因此兩者的概率之和為1,又兩個(gè)事件的概率相等,因此概率均為0.5.
24.
,
25.16.將實(shí)際問題求最值的問題轉(zhuǎn)化為二次函數(shù)在某個(gè)區(qū)間上的最值問題.設(shè)矩形的長為xm,則寬為:16-2x/2=8-x(m)∴S矩形=x(8-x)=-x2+8x=-(x-4)2+16≤16.
26.π/2
27.{x|1<x<5且x≠2},
28.0.54,由于甲擊中的事件和乙擊中的事件互相獨(dú)立,因此可得甲乙同時(shí)擊中的概率為P=0.6*0.9=0.54.
29.1.三角函數(shù)最值.因f(x)=sinxcosφ+cosxsinφ-2sinφcosx=sinxcosφ-cosxsinφ=sin(x-φ)≤1,故函數(shù)f(x)==sin(x+φ)-2sinφcosx的最大值為1.
30.-1≤k<3
31.
32.
33.解:(1)因?yàn)閒(x)=在R上是奇函數(shù)所以f(-x)=-f(x),f(-1)=-f(1)=-2(2)f(t2-3t+1)>-2=f(-1)因?yàn)閒(x)=在R上是減函數(shù),t2-3t+1<-1所以1<t<2
34.
35.解:設(shè)首項(xiàng)為a1、公差為d,依題意:4a1+6d=-62;6a1+15d=-75解得a1=-20,d=3,an=a1+(n-1)d=3n-23
36.
37.
38.解:實(shí)半軸長為4∴a=4e=c/a=3/2,∴c=6∴a2=16,b2=c2-a2=20雙曲線方程為
39.
40.
41.
X>4
42.
43.x-7y+19=0或7x+y-17=0
44.由已知得整理得(2x+m)2=4x即∴再根據(jù)兩點(diǎn)間距離公式得
45.
∴
∴得2c=0∴得c=0又∵由f(1)=2∴得又∵f(2)<3∴
∴得0<b<∵b∈Z∴b=1∴(2)設(shè)-1<<<0∵
∴
若時(shí)
故當(dāng)X<-1時(shí)為增函數(shù);當(dāng)-1≤X<0為減函數(shù)
46.1,2,3三個(gè)數(shù)字組成無重復(fù)數(shù)字的所有三位數(shù)共有(1)其中偶數(shù)有,故所求概率為(2)其中奇數(shù)相鄰的三位數(shù)有個(gè)故所求概率為
47.證明:(1)PA⊥底面ABCDPA丄BC又∠ACB=90°,BC丄AC則BC丄平面PAC(2)設(shè)點(diǎn)B到平面PCD的距離為hAB//CDAB//平面PCD又∠BAD=120°∠ADC=60°又AD=CD=1則△ADC為等邊三角形,且AC=1PA=
PD=PC=2
48.
49.設(shè)等比數(shù)列的三個(gè)正數(shù)為,a,aq由題意得解得,a=4,q=1或q=解得這三個(gè)數(shù)為1,4,16或16,4,1
50.
51.
52.(1)如圖,已知底面ABCD是正方形,∴CD⊥AD.∵PD⊥平面ABCD,又CD包含于平面ABCD,∴PD⊥CD.∵PD∩AD=D,∴CD⊥平面PAD,又PA包含于平面PAD,∴PA⊥CD.(2)解∵BC//AD,∴∠PAD即為異面直線PA與BC所成的角.由(1)知,PD⊥AD,在Rt△PAD中,PD=AD,故∠PAD=45°即為所求.
53.
54.
55.
56.
57.
58.
59.(1)設(shè)橢圓的方程為x2/a2+y2/b2=1因?yàn)閑=,所以a2=4b2,又因?yàn)闄E圓過點(diǎn)M(4,1),所以16/a2+1/b2=1,解得b2=5,a2=20,故橢圓標(biāo)準(zhǔn)方x2/20+y
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2026屆銀川市重點(diǎn)中學(xué)高三英語第一學(xué)期期末達(dá)標(biāo)測試試題含解析
- 票據(jù)管理制度適用范圍(3篇)
- 藥品紙箱管理制度范本(3篇)
- 設(shè)計(jì)工時(shí)管理制度范本(3篇)
- 輔材配件管理制度范本(3篇)
- 野生種質(zhì)資源圃管理制度(3篇)
- 防疫臨時(shí)駐場人員管理制度(3篇)
- 食品品質(zhì)責(zé)任管理制度內(nèi)容(3篇)
- 疾病預(yù)防與安全應(yīng)急 溺水的預(yù)防與急救 課件2025-2026學(xué)年人教版初中+體育與健康七年級全一冊
- 中學(xué)學(xué)生社團(tuán)財(cái)務(wù)管理制度
- 2026年藥店培訓(xùn)計(jì)劃試題及答案
- 2026春招:中國煙草真題及答案
- 六年級寒假家長會(huì)課件
- 物流鐵路專用線工程節(jié)能評估報(bào)告
- 2026河南省氣象部門招聘應(yīng)屆高校畢業(yè)生14人(第2號)參考題庫附答案
- 2026天津市南開區(qū)衛(wèi)生健康系統(tǒng)招聘事業(yè)單位60人(含高層次人才)備考核心試題附答案解析
- 2025江蘇無錫市宜興市部分機(jī)關(guān)事業(yè)單位招聘編外人員40人(A類)備考筆試試題及答案解析
- 卵巢過度刺激征課件
- 漢服行業(yè)市場壁壘分析報(bào)告
- 重瞼手術(shù)知情同意書
- 2026華潤燃?xì)庑@招聘(公共基礎(chǔ)知識(shí))綜合能力測試題附答案解析
評論
0/150
提交評論