版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
2023年江蘇省南京市普通高校對(duì)口單招數(shù)學(xué)自考測(cè)試卷(含答案)學(xué)校:________班級(jí):________姓名:________考號(hào):________
一、單選題(20題)1.已知A={x|x+1>0},B{-2,-1,0,1},則(CRA)∩B=()A.{-2,-1}B.{-2}C.{-1,0,1}D.{0,1}
2.某高職院校為提高辦學(xué)質(zhì)量,建設(shè)同時(shí)具備理論教學(xué)和實(shí)踐教學(xué)能力的“雙師型”教師隊(duì)伍,現(xiàn)決定從3名男教師和3名女教師中任選2人一同到某企業(yè)實(shí)訓(xùn),則選中的2人都是男教師的概率為()A.
B.
C.
D.
3.A.3B.4C.5D.6
4.在等差數(shù)列{an}中,a5=9,則S9等于()A.95B.81C.64D.45
5.A.1B.-1C.2D.-2
6.A.(-2.3)B.(2,3]C.[2,3)D.[-2,3]
7.某四棱錐的三視圖如圖所示,該四棱錐最長(zhǎng)棱的棱長(zhǎng)為()A.1
B.
C.
D.2
8.下列函數(shù)為偶函數(shù)的是A.
B.
C.
D.
9.若向量A.(4,6)B.(-4,-6)C.(-2,-2)D.(2,2)
10.設(shè)是l,m兩條不同直線,α,β是兩個(gè)不同平面,則下列命題中正確的是()A.若l//α,α∩β=m,則l//m
B.若l//α,m⊥l,則m⊥α
C.若l//α,m//α,則l//m
D.若l⊥α,l///β則a⊥β
11.A.-1B.-4C.4D.2
12.若函數(shù)f(x)=x2+mx+1有兩個(gè)不同的零點(diǎn),則實(shí)數(shù)m的取值范圍是()A.(-1,1)B.(-2,2)C.(-∞,-2)∪(2,+∞)D.(-∞,-l)∪(l,+∞)
13.某商場(chǎng)以每件30元的價(jià)格購(gòu)進(jìn)一種商品,試銷中發(fā)現(xiàn),這種商品每天的銷量m(件)與x售價(jià)(元)滿足一次函數(shù):m=162-3x,若要每天獲得最大的銷售利潤(rùn),每件商品的售價(jià)應(yīng)定為()A.30元B.42元C.54元D.越高越好
14.下列命題是真命題的是A.B.C.D.
15.函數(shù)的定義域()A.[3,6]B.[-9,1]C.(-∞,3]∪[6,+∞)D.(-∞,+∞)
16.5人排成一排,甲必須在乙之后的排法是()A.120B.60C.24D.12
17.A.B.C.D.
18.若102x=25,則10-x等于()A.
B.
C.
D.
19.已知互為反函數(shù),則k和b的值分別是()A.2,
B.2,
C.-2,
D.-2,
20.若不等式|ax+2|<6的解集為(-1,2),則實(shí)數(shù)a等于()A.8B.2C.-4D.-8
二、填空題(10題)21.設(shè)集合,則AB=_____.
22.某工廠生產(chǎn)A、B、C三種不同型號(hào)的產(chǎn)品,產(chǎn)品數(shù)量之比依次為2:3:4,現(xiàn)用分層抽樣方法抽出一個(gè)容量為n的樣本,樣本中A種型號(hào)產(chǎn)品有6件,那么n=
。
23.
24.不等式|x-3|<1的解集是
。
25.若f(x-1)=x2-2x+3,則f(x)=
。
26.
27.已知函數(shù)則f(f⑶)=_____.
28.秦九昭是我國(guó)南宋時(shí)期的數(shù)學(xué)家,他在所著的《數(shù)學(xué)九章》中提出的多項(xiàng)式求值的秦九昭算法,至今仍是比較先進(jìn)的算法,如圖所示的程序框圖給出了利用秦九昭算法求某多項(xiàng)式值的一個(gè)實(shí)例,若輸入n,x的值分別為3,4,則輸出v的值為________.
29.已知一個(gè)正四棱柱的底面積為16,高為3,則該正四棱柱外接球的表面積為_____.
30.
三、計(jì)算題(10題)31.設(shè)函數(shù)f(x)既是R上的減函數(shù),也是R上的奇函數(shù),且f(1)=2.(1)求f(-1)的值;(2)若f(t2-3t+1)>-2,求t的取值范圍.
32.近年來(lái),某市為了促進(jìn)生活垃圾的分類處理,將生活垃圾分為“廚余垃圾”、“可回收垃圾”、“有害垃圾”和“其他垃圾”等四類,并分別垛置了相應(yīng)的垃圾箱,為調(diào)查居民生活垃圾的正確分類投放情況,現(xiàn)隨機(jī)抽取了該市四類垃圾箱總計(jì)100噸生活垃圾,數(shù)據(jù)統(tǒng)計(jì)如下(單位:噸):(1)試估計(jì)“可回收垃圾”投放正確的概率;(2)試估計(jì)生活垃圾投放錯(cuò)誤的概率。
33.已知函數(shù)f(x)的定義域?yàn)閧x|x≠0},且滿足.(1)求函數(shù)f(x)的解析式;(2)判斷函數(shù)f(x)的奇偶性,并簡(jiǎn)單說明理由.
34.在等差數(shù)列{an}中,前n項(xiàng)和為Sn
,且S4
=-62,S6=-75,求等差數(shù)列{an}的通項(xiàng)公式an.
35.某小組有6名男生與4名女生,任選3個(gè)人去參觀某展覽,求(1)3個(gè)人都是男生的概率;(2)至少有兩個(gè)男生的概率.
36.有語(yǔ)文書3本,數(shù)學(xué)書4本,英語(yǔ)書5本,書都各不相同,要把這些書隨機(jī)排在書架上.(1)求三種書各自都必須排在一起的排法有多少種?(2)求英語(yǔ)書不挨著排的概率P。
37.已知函數(shù)y=cos2x+3sin2x,x∈R求:(1)函數(shù)的值域;(2)函數(shù)的最小正周期。
38.甲、乙兩人進(jìn)行投籃訓(xùn)練,己知甲投球命中的概率是1/2,乙投球命中的概率是3/5,且兩人投球命中與否相互之間沒有影響.(1)若兩人各投球1次,求恰有1人命中的概率;(2)若兩人各投球2次,求這4次投球中至少有1次命中的概率.
39.解不等式4<|1-3x|<7
40.求焦點(diǎn)x軸上,實(shí)半軸長(zhǎng)為4,且離心率為3/2的雙曲線方程.
四、簡(jiǎn)答題(10題)41.已知是等差數(shù)列的前n項(xiàng)和,若,.求公差d.
42.已知集合求x,y的值
43.已知函數(shù)(1)求函數(shù)f(x)的最小正周期及最值(2)令判斷函數(shù)g(x)的奇偶性,并說明理由
44.求過點(diǎn)P(2,3)且被兩條直線:3x+4y-7=0,:3x+4y+8=0所截得的線段長(zhǎng)為的直線方程。
45.拋物線的頂點(diǎn)在原點(diǎn),焦點(diǎn)為橢圓的左焦點(diǎn),過點(diǎn)M(-1,-1)引拋物線的弦使M為弦的中點(diǎn),求弦長(zhǎng)
46.等差數(shù)列的前n項(xiàng)和為Sn,已知a10=30,a20=50。(1)求通項(xiàng)公式an。(2)若Sn=242,求n。
47.設(shè)函數(shù)是奇函數(shù)(a,b,c∈Z)且f(1)=2,f(2)<3.(1)求a,b,c的值;(2)當(dāng)x<0時(shí),判斷f(x)的單調(diào)性并加以證明.
48.以點(diǎn)(0,3)為頂點(diǎn),以y軸為對(duì)稱軸的拋物線的準(zhǔn)線與雙曲線3x2-y2+12=0的一條準(zhǔn)線重合,求拋物線的方程。
49.已知雙曲線C:的右焦點(diǎn)為,且點(diǎn)到C的一條漸近線的距離為.(1)求雙曲線C的標(biāo)準(zhǔn)方程;(2)設(shè)P為雙曲線C上一點(diǎn),若|PF1|=,求點(diǎn)P到C的左焦點(diǎn)的距離.
50.化簡(jiǎn)a2sin(-1350°)+b2tan405°-(a-b)2cot765°-2abcos(-1080°)
五、解答題(10題)51.已知函數(shù)f(x)=ex(ax+b)—x2—4x,曲線:y=f(x)在點(diǎn)(0,f(0))處的切線方程為y=4x+4.(1)求a,b的值;(2)討論f(x)的單調(diào)性,并求f(x)的極大值.
52.已知數(shù)列{an}是首項(xiàng)和公差相等的等差數(shù)列,其前n項(xiàng)和為Sn,且S10=55.(1)求an和Sn(2)設(shè)=bn=1/Sn,數(shù)列{bn}的前n項(xiàng)和為T=n,求Tn的取值范圍.
53.等差數(shù)列{an}中,a7=4,a19=2a9.(1)求{an}的通項(xiàng)公式;(2)設(shè)bn=1/nan求數(shù)列{bn}的前n項(xiàng)和Sn.
54.如圖,在正方體ABCD—A1B1C1D1中,E,F(xiàn)分別為棱AD,AB的中點(diǎn).(1)求證:EF//平面CB1D1;(2)求證:平面CAA1C1丄平面CB1D1
55.已知{an}為等差數(shù)列,且a3=-6,a6=0.(1)求{an}的通項(xiàng)公式;(2)若等比數(shù)列{bn}滿足b1=-8,b2=a1+a2+a3,求{bn}的前n項(xiàng)和公式.
56.
57.
58.已知橢圓的中心為原點(diǎn),焦點(diǎn)在x軸上,離心率為,且經(jīng)過點(diǎn)M(4,1),直線l:y=x+m交橢圓于異于M的不同兩點(diǎn)A,B直線MA,MB與x軸分別交于點(diǎn)E,F(xiàn).(1)求橢圓的標(biāo)準(zhǔn)方程;(2)求m的取值范圍.
59.已知橢圓C:x2/a2+y2/b2=1(a>b>0)的兩焦點(diǎn)分別F1,F2點(diǎn)P在橢圓C上,且∠PF2F1=90°,|PF1|=6,|PF2|=2.(1)求橢圓C的方程;(2)是否存在直線L與橢圓C相交于A、B兩點(diǎn),且使線段AB的中點(diǎn)恰為圓M:x2+y2+4x-2y=0的圓心,如果存在,求直線l的方程;如果不存在,請(qǐng)說明理由.
60.
六、單選題(0題)61.若等比數(shù)列{an}滿足,a1+a3=20,a2+a4=40,則公比q=()A.1B.2C.-2D.4
參考答案
1.A交集
2.C
3.B線性回歸方程的計(jì)算.將(x,y)代入:y=1+bx,得b=4
4.B
5.A
6.B
7.C四棱錐的直觀圖.四棱錐的直觀圖如圖所示,PC⊥平面ABCD,PC=1,底面四邊形ABCD為正方形且邊長(zhǎng)為1,最長(zhǎng)棱長(zhǎng)
8.A
9.A向量的運(yùn)算.=(l,2)+(3,4)=(4,6).
10.D空間中直線與平面的位置關(guān)系,平面與平面的位置關(guān)系.對(duì)于A:l與m可能異面,排除A;對(duì)于B;m與α可能平行或相交,排除B;對(duì)于C:l與m可能相交或異面,排除C
11.C
12.C一元二次方程的根的判別以及一元二次不等式的解法.由題意知,一元二次方程x2+mx+1=0有兩個(gè)不等實(shí)根,可得△>0,即m2-4>0,解得m>2或m<-2.故選C
13.B函數(shù)的實(shí)際應(yīng)用.設(shè)日銷售利潤(rùn)為y元,則y=(x-30)(162-3x),30≤x≤54,將上式配方得y=-3(x-42)2+432,所以x=42時(shí),利潤(rùn)最大.
14.A
15.A
16.C
17.A
18.B
19.B因?yàn)榉春瘮?shù)的圖像是關(guān)于y=x對(duì)稱,所以k=2.然后把一式中的x用y的代數(shù)式表達(dá),再把x,y互換,代入二式,得到m=-3/2.
20.C
21.{x|0<x<1},
22.72
23.π/4
24.
25.
26.{x|0<x<1/3}
27.2e-3.函數(shù)值的計(jì)算.由題意得,f(3)=㏒3(9-6)=1,所以f(f(3))=f⑴=2e-3.
28.100程序框圖的運(yùn)算.初始值n=3,x=4,程序運(yùn)行過程如下表所示:v=1,i=2,v=1×4+2=6,i=1,v=6×4+l=25,i=0,v=25×4+0=100,i=-1跳出循環(huán),輸出v的值為100.
29.41π,由題可知,底面邊長(zhǎng)為4,底面對(duì)角線為,外接球的直徑即由高和底面對(duì)角線組成的矩形的對(duì)角線,所以外接球的直徑為,外接球的表面積為。
30.2π/3
31.解:(1)因?yàn)閒(x)=在R上是奇函數(shù)所以f(-x)=-f(x),f(-1)=-f(1)=-2(2)f(t2-3t+1)>-2=f(-1)因?yàn)閒(x)=在R上是減函數(shù),t2-3t+1<-1所以1<t<2
32.
33.
34.解:設(shè)首項(xiàng)為a1、公差為d,依題意:4a1+6d=-62;6a1+15d=-75解得a1=-20,d=3,an=a1+(n-1)d=3n-23
35.
36.
37.
38.
39.
40.解:實(shí)半軸長(zhǎng)為4∴a=4e=c/a=3/2,∴c=6∴a2=16,b2=c2-a2=20雙曲線方程為
41.根據(jù)等差數(shù)列前n項(xiàng)和公式得解得:d=4
42.
43.(1)(2)∴又∴函數(shù)是偶函數(shù)
44.x-7y+19=0或7x+y-17=0
45.
46.
47.
∴
∴得2c=0∴得c=0又∵由f(1)=2∴得又∵f(2)<3∴
∴得0<b<∵b∈Z∴b=1∴(2)設(shè)-1<<<0∵
∴
若時(shí)
故當(dāng)X<-1時(shí)為增函數(shù);當(dāng)-1≤X<0為減函數(shù)
48.由題意可設(shè)所求拋物線的方程為準(zhǔn)線方程為則y=-3代入得:p=12所求拋物線方程為x2=24(y-3)
49.(1)∵雙曲線C的右焦點(diǎn)為F1(2,0),∴c=2又點(diǎn)F1到C1的一條漸近線的距離為,∴,即以解得b=
50.原式=
51.
52.(1)設(shè)數(shù)列{an}的公差為d則a1=d,an=a1+(n-l)d=nd,由Sn=a1+a2+...+a10=55d=55,解得d=1,所以an=n,Sn=(1+n)n/2=1/2n(n+1)(2)由(1)得bn=2/n(n+1)=2(1/n-1/n)所以Tn=2(1-1/2)+2(1/2-1/3)+2(1/3-1/4)+...+2(1/n-1/n+1)=2(1-1/n+1).由于2(1-1/n+1)隨n的增大而增大,可得1≤Tn<2.即Tn的取值范圍是[1,2).
53.
54.(1)如圖,連接BD,在正方體AC1中,對(duì)角線BD//B1D1.又因?yàn)?,E,F分別為棱AD,AB的中點(diǎn),所以EF//BD,所以EF//B1D1,又因?yàn)锽1D1包含于平面CB1D1,所以EF//平面CB1D1.
55.(1)設(shè)等差數(shù)列{an}的公差為d因?yàn)閍3=-6,a5=0,所以解得a1=-10,d=2所以an=-10+(n-1)×2=2n-12.(2)設(shè)等比數(shù)列{bn}的公比為q.因?yàn)閎2=a1+a2+a3=-24,b1=-8,所以-8q=-24,q=3.所以數(shù)列{bn}的前n項(xiàng)和公式為Sn=b1(1-qn)/1-q=4(1-3n)
56.
57.
58.(1)設(shè)橢圓的方程為x2/a2
溫馨提示
- 1. 本站所有資源如無(wú)特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 2026屆銀川市重點(diǎn)中學(xué)高三英語(yǔ)第一學(xué)期期末達(dá)標(biāo)測(cè)試試題含解析
- 票據(jù)管理制度適用范圍(3篇)
- 藥品紙箱管理制度范本(3篇)
- 設(shè)計(jì)工時(shí)管理制度范本(3篇)
- 輔材配件管理制度范本(3篇)
- 野生種質(zhì)資源圃管理制度(3篇)
- 防疫臨時(shí)駐場(chǎng)人員管理制度(3篇)
- 食品品質(zhì)責(zé)任管理制度內(nèi)容(3篇)
- 疾病預(yù)防與安全應(yīng)急 溺水的預(yù)防與急救 課件2025-2026學(xué)年人教版初中+體育與健康七年級(jí)全一冊(cè)
- 中學(xué)學(xué)生社團(tuán)財(cái)務(wù)管理制度
- 2026年藥店培訓(xùn)計(jì)劃試題及答案
- 2026春招:中國(guó)煙草真題及答案
- 六年級(jí)寒假家長(zhǎng)會(huì)課件
- 物流鐵路專用線工程節(jié)能評(píng)估報(bào)告
- 2026河南省氣象部門招聘應(yīng)屆高校畢業(yè)生14人(第2號(hào))參考題庫(kù)附答案
- 2026天津市南開區(qū)衛(wèi)生健康系統(tǒng)招聘事業(yè)單位60人(含高層次人才)備考核心試題附答案解析
- 2025江蘇無(wú)錫市宜興市部分機(jī)關(guān)事業(yè)單位招聘編外人員40人(A類)備考筆試試題及答案解析
- 卵巢過度刺激征課件
- 漢服行業(yè)市場(chǎng)壁壘分析報(bào)告
- 重瞼手術(shù)知情同意書
- 2026華潤(rùn)燃?xì)庑@招聘(公共基礎(chǔ)知識(shí))綜合能力測(cè)試題附答案解析
評(píng)論
0/150
提交評(píng)論