2023年江蘇省徐州市普通高校對口單招數(shù)學自考預測試題(含答案)_第1頁
2023年江蘇省徐州市普通高校對口單招數(shù)學自考預測試題(含答案)_第2頁
2023年江蘇省徐州市普通高校對口單招數(shù)學自考預測試題(含答案)_第3頁
2023年江蘇省徐州市普通高校對口單招數(shù)學自考預測試題(含答案)_第4頁
2023年江蘇省徐州市普通高校對口單招數(shù)學自考預測試題(含答案)_第5頁
已閱讀5頁,還剩26頁未讀 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

2023年江蘇省徐州市普通高校對口單招數(shù)學自考預測試題(含答案)學校:________班級:________姓名:________考號:________

一、單選題(20題)1.設集合A={1,2,4},B={2,3,4},則A∪B=()A.{1,2}B.{2,4}C.{1,2,3,4}D.{1,2,3}

2.(1-x)4的展開式中,x2的系數(shù)是()A.6B.-6C.4D.-4

3.拋物線y2-4x+17=0的準線方程是()A.x=2B.x=-2C.x=1D.x=-1

4.下列四組函數(shù)中表示同一函數(shù)的是()A.y=x與y=

B.y=2lnx與y=lnx2

C.y=sinx與y=cos()

D.y=cos(2π-x)與y=sin(π-x)

5.執(zhí)行如圖所示的程序框圖,輸出n的值為()A.19B.20C.21D.22

6.用簡單隨機抽樣的方法從含有100個個體的總體中依次抽取一個容量為5的樣本,則個體m被抽到的概率為()A.1/100B.1/20C.1/99D.1/50

7.拋擲兩枚骰子,兩次點數(shù)之和等于5的概率是()A.

B.

C.

D.

8.直線2x-y+7=0與圓(x-b2)+(y-b2)=20的位置關系是()A.相離B.相交但不過圓心C.相交且過圓心D.相切

9.2與18的等比中項是()A.36B.±36C.6D.±6

10.圓心為(1,1)且過原點的圓的方程是()A.(x-l)2+(y-1)2=1

B.(x+1)2+(y+1)2=1

C.(x+1)2+(y+1)2=2

D.(x-1)2+(y-1)2=2

11.下列函數(shù)為偶函數(shù)的是A.

B.

C.

D.

12.已知全集U=R,集合A={x|x>2},則CuA=()A.{x|x≤1}B.{x|x<1}C.{x|x<2}D.{x|x≤2}

13.已知a=(1,2),則2a=()A.(1,2)B.(2,4)C.(2,1)D.(4,2)

14.已知定義在R上的函數(shù)f(x)圖象關于直線x=l對稱,若X≥1時,f(x)=x(1-x),則f(0)=()A.OB.-2C.-6D.-12

15.袋中裝有4個大小形狀相同的球,其中黑球2個,白球2個,從袋中隨機抽取2個球,至少有一個白球的概率為()A.

B.

C.

D.

16.三角函數(shù)y=sinx2的最小正周期是()A.πB.0.5πC.2πD.4π

17.若f(x)=1/log1/2(2x+1),則f(x)的定義域為()A.(-1/2,0)B.(-1/2,+∞)C.(-1/2,0)∪(0,+∞)D.(-1/2,2)

18.A.

B.

C.

19.函數(shù)的定義域為()A.(0,2)B.(0,2]C.(2,+∞)D.[2,+∞)

20.下列命題是真命題的是A.B.C.D.

二、填空題(10題)21.

22.集合A={1,2,3}的子集的個數(shù)是

。

23.若展開式中各項系數(shù)的和為128,則展開式中x2項的系數(shù)為_____.

24.

25.已知函數(shù)則f(f⑶)=_____.

26.lg5/2+2lg2-(1/2)-1=______.

27.設f(x)是定義在R上的奇函數(shù),當x≤0時,f(x)=2x2-x,則f⑴=______.

28.設x>0,則:y=3-2x-1/x的最大值等于______.

29.若f(X)=,則f(2)=

。

30.某程序框圖如下圖所示,該程序運行后輸出的a的最大值為______.

三、計算題(10題)31.在等差數(shù)列{an}中,前n項和為Sn

,且S4

=-62,S6=-75,求等差數(shù)列{an}的通項公式an.

32.己知{an}為等差數(shù)列,其前n項和為Sn,若a3=6,S3=12,求公差d.

33.求焦點x軸上,實半軸長為4,且離心率為3/2的雙曲線方程.

34.從含有2件次品的7件產品中,任取2件產品,求以下事件的概率.(1)恰有2件次品的概率P1;(2)恰有1件次品的概率P2

.

35.解不等式4<|1-3x|<7

36.已知函數(shù)y=cos2x+3sin2x,x∈R求:(1)函數(shù)的值域;(2)函數(shù)的最小正周期。

37.某小組有6名男生與4名女生,任選3個人去參觀某展覽,求(1)3個人都是男生的概率;(2)至少有兩個男生的概率.

38.(1)求函數(shù)f(x)的定義域;(2)判斷函數(shù)f(x)的奇偶性,并說明理由。

39.己知直線l與直線y=2x+5平行,且直線l過點(3,2).(1)求直線l的方程;(2)求直線l在y軸上的截距.

40.已知函數(shù)f(x)的定義域為{x|x≠0},且滿足.(1)求函數(shù)f(x)的解析式;(2)判斷函數(shù)f(x)的奇偶性,并簡單說明理由.

四、簡答題(10題)41.已知A,B分別是橢圓的左右兩個焦點,o為坐標的原點,點P(-1,)在橢圓上,線段PB與y軸的焦點M為線段PB的中心點,求橢圓的標準方程

42.求經過點P(2,-3)且橫縱截距相等的直線方程

43.一條直線l被兩條直線:4x+y+6=0,3x-5y-6=0截得的線段中點恰好是坐標原點,求直線l的方程.

44.化簡

45.已知等差數(shù)列的前n項和是求:(1)通項公式(2)a1+a3+a5+…+a25的值

46.已知函數(shù),且.(1)求a的值;(2)求f(x)函數(shù)的定義域及值域.

47.三個數(shù)a,b,c成等差數(shù)列,公差為3,又a,b+1,c+6成等比數(shù)列,求a,b,c。

48.已知拋物線的焦點到準線L的距離為2。(1)求拋物線的方程及焦點下的坐標。(2)過點P(4,0)的直線交拋物線AB兩點,求的值。

49.點A是BCD所在平面外的一點,且AB=AC,BAC=BCD=90°,BDC=60°,平面ABC丄平面BCD。(1)求證平面ABD丄平面ACD;(2)求二面角A-BD-C的正切值。

50.據(jù)調查,某類產品一個月被投訴的次數(shù)為0,1,2的概率分別是0.4,0.5,0.1,求該產品一個月內被投訴不超過1次的概率

五、解答題(10題)51.

52.求函數(shù)f(x)=x3-3x2-9x+5的單調區(qū)間,極值.

53.組成等差數(shù)列的三個正數(shù)的和等于15,并且這三個數(shù)列分別加上1、3、5后又成等比數(shù)列,求這三個數(shù)

54.已知函數(shù)f(x)=4cosxsin(x+π/6)-1.(1)求f(x)的最小正周期;(2)求f(x)在區(qū)間[-π/6,π/4]上的最大值和最小值.

55.

56.

57.如圖,在正方體ABCD-A1B1C1D1中,S是B1D1的中點,E,F(xiàn),G分別是BC,DC,SC的中點,求證:(1)直線EG//平面BDD1B1;(2)平面EFG//平面BDD1B1

58.證明上是增函數(shù)

59.

60.已知數(shù)列{an}是公差不為0的等差數(shù)列a1=2,且a2,a3,a4+1成等比數(shù)列.(1)求數(shù)列{an}的通項公式;(2)設bn=2/n(an+2),求數(shù)列{bn}的前n項和Sn.

六、單選題(0題)61.A.B.C.D.R

參考答案

1.C集合的并集.由兩集合并集的定義可知,A∪B={1,2,3,4},故選C

2.A

3.D

4.Ccos(3π/2+x)=cos(π/2-x)=sinx,所以選項C表示同一函數(shù)。

5.B程序框圖的運算.模擬執(zhí)行如圖所示的程序框圖知,該程序的功能是計算S=1+2+...+n≥210時n的最小自然數(shù)值,由S=n(n+1)/2≥210,解得n≥20,∴輸出n的值為20.

6.B簡單隨機抽樣方法.總體含有100個個體,則每個個體被抽到的概率為1/100,所以以簡單隨機抽樣的方法從該總體中抽取一個容量為5的樣本,則指定的某個個體被抽到的概率為1/100×5=1/20.

7.A

8.D由題可知,直線2x-y+7=0到圓(x-b)2+(y-b)2=20的距離等于半徑,所以二者相切。

9.D

10.D圓的標準方程.圓的半徑r

11.A

12.D補集的計算.由A={x|x>2},全集U=R,則CuA={x|x≤2}

13.B平面向量的線性運算.=2(1,2)=(2,4).

14.B函數(shù)圖像的對稱性.由對稱性可得f(0)=f(2)=2(1-2)=-2

15.D從中隨即取出2個球,每個球被取到的可能性相同,因此所有的取法為,所取出的的2個球至少有1個白球,所有的取法為,由古典概型公式可知P=5/6.

16.A

17.C函數(shù)的定義域.㏒1/2(2x+l)≠0,所以2x+l>0,2x+l≠1.所以x∈(-1/2,0)∪(0,+∞).

18.B

19.C對數(shù)的性質.由題意可知x滿足㏒2x-1>0,即㏒2x>㏒22,根據(jù)對數(shù)函數(shù)的性質得x>2,即函數(shù)f(x)的定義域是(2,+∞).

20.A

21.-1/2

22.8

23.-189,

24.2π/3

25.2e-3.函數(shù)值的計算.由題意得,f(3)=㏒3(9-6)=1,所以f(f(3))=f⑴=2e-3.

26.-1.對數(shù)的四則運算.lg5/2+21g2-〔1/2)-1=lg5/2+lg22-2=lg(5/2×4)-2=1-2=-1.

27.-3.函數(shù)的奇偶性的應用.∵f(x)是定義在只上的奇函數(shù),且x≤0時,f(x)-2x2-x,f(1)==-f(-1)=-2x(-1)2+(-l)=-3.

28.

基本不等式的應用.

29.00。將x=2代入f(x)得,f(2)=0。

30.45程序框圖的運算.當n=1時,a=15;當時,a=30;當n=3,a=45;當n=4不滿足循環(huán)條件,退出循環(huán),輸出a=45.

31.解:設首項為a1、公差為d,依題意:4a1+6d=-62;6a1+15d=-75解得a1=-20,d=3,an=a1+(n-1)d=3n-23

32.

33.解:實半軸長為4∴a=4e=c/a=3/2,∴c=6∴a2=16,b2=c2-a2=20雙曲線方程為

34.

35.

36.

37.

38.

39.解:(1)設所求直線l的方程為:2x-y+c=0∵直線l過點(3,2)∴6-2+c=0即c=-4∴所求直線l的方程為:2x-y-4=0(2)∵當x=0時,y=-4∴直線l在y軸上的截距為-4

40.

41.點M是線段PB的中點又∵OM丄AB,∴PA丄AB則c=1+=1,a2=b2+c2解得,a2=2,b2=1,c2=1因此橢圓的標準方程為

42.設所求直線方程為y=kx+b由題意可知-3=2k+b,b=解得,時,b=0或k=-1時,b=-1∴所求直線為

43.

44.sinα

45.

46.(1)(2)

47.由已知得:由上可解得

48.(1)拋物線焦點F(,0),準線L:x=-,∴焦點到準線的距離p=2∴拋物線的方程為y2=4x,焦點為F(1,0)(2)直線AB與x軸不平行,故可設它的方程為x=my+4,得y2-4m-16=0由設A(x1,x2),B(y1,y2),則y1y2=-16∴

49.分析:本題考查面面垂直的證明,考查二面角的正切值的求法。(1)推導出CD⊥AB,AB⊥AC,由此能證明平面ABD⊥平面ACD。

(2)取BC中點O,以O為原點,過O作CD的平行線為x軸,OC為y軸,OA為z軸,建立空間直角坐標系,利用向量法能求出二面角A-BD-C的正切值。解答:證明:(Ⅰ)∵面ABC⊥底面BCD,∠BCD=90°,面ABC∩面BCD=BC,

∴CD⊥平面ABC,∴CD⊥AB,

∵∠BAC=90°,∴AB⊥AC,

∵AC∩CD=C,

∴平面ABD⊥平面ACD。解:(Ⅱ)取BC中點O,∵面ABC⊥底面BCD,∠BAC=90°,AB=AC,

∴AO⊥BC,∴AO⊥平面BDC,

以O為原點,過O作CD的平行線為x軸,OC為y軸,OA為z軸,建立空間直角坐標系,

50.設事件A表示“一個月內被投訴的次數(shù)為0”,事件B表示“一個月內被投訴的次數(shù)為1”∴P(A+B)=P(A)+P(B)=0.4+0.5=0.9

51.

52.f(x)=x3-6x-9=3(x+1)(x-3)令f(x)>0,∴x>3或x,-1.令f(x)<0時,-1<x<3.∴f(x)單調增區(qū)間為(-∞,-1],[3,+∞),單調減區(qū)間為[-1,3].f(x)極大值為f(-1)=l0,f(x)極小值為f(3)=-22.

53.

54.

55.

56.

57.證

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論