人教版初中數(shù)學(xué)九年級下冊教案2721第2課時三邊成比例的兩個三角形相似_第1頁
人教版初中數(shù)學(xué)九年級下冊教案2721第2課時三邊成比例的兩個三角形相似_第2頁
人教版初中數(shù)學(xué)九年級下冊教案2721第2課時三邊成比例的兩個三角形相似_第3頁
人教版初中數(shù)學(xué)九年級下冊教案2721第2課時三邊成比例的兩個三角形相似_第4頁
全文預(yù)覽已結(jié)束

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

相像三角形的判斷第2課時三邊成比率的兩個三角形相像1.理解“三邊成比率的兩個三角形相像”的判斷方法;(要點)2.會運用“三邊成比率的兩個三角形相像”的判斷方法解決簡單問題.一、情境導(dǎo)入我們此刻判斷兩個三角形能否相像,一定要知道它們的對應(yīng)角能否相等,對應(yīng)邊能否成比率.那么能否存在判斷兩個三角形相像的簡易方法呢?在如下圖的方格上任畫一個三角形,再畫第二個三角形,使它的三邊長都是原三角形的三邊長的同樣倍數(shù).畫完以后,用量角器比較兩個三角形的對應(yīng)角,你發(fā)現(xiàn)了什么結(jié)論?大家的結(jié)論都同樣嗎?二、合作研究研究點:三邊對應(yīng)成比率的兩個三角形相像【種類一】直接利用定理判斷兩個三角形相像在Rt△ABC中,∠C=90°,AB=10,BC=6,在Rt△EDF中,∠F=90°,DF=3,EF=4,則△ABC和△EDF相像嗎?為何?分析:已知△ABC和△EDF都是直角三角形,且已知兩條邊長,因此可利用勾股定理分別求出第三邊的長,看對應(yīng)邊能否對應(yīng)成比率.解:△ABC∽△EDF.在Rt△ABC中,AB=10,BC=6,∠C=90°,由勾股定理得AC=AB2-2=102-62=8.在Rt△DEF中,DF=3,=4,∠F=90°,由勾股定理得ED=BCEFDF2+EF2=32+42=5.在△ABC和△EDF中,BC6AC8AB10BC==2,==2,==2,因此DF=DF3EF4ED5ACABEF=ED,因此△ABC∽△EDF.方法總結(jié):利用三邊對應(yīng)成比率判斷兩個三角形相像時,應(yīng)說明三角形的三邊對應(yīng)成比率,1而不是兩邊對應(yīng)成比率.變式訓(xùn)練:見《學(xué)練優(yōu)》本課時練習(xí)“講堂達標訓(xùn)練”第2題【種類二】網(wǎng)格中的相像三角形如圖,在邊長為1的小正方形構(gòu)成的網(wǎng)格中,△ABC和△DEF的極點都在格點上,判斷△ABC和△DEF能否相像,并說明原因.ABACBC分析:第一由勾股定理,求得△ABC和△DEF的各邊的長,即可得DE=DF=EF,而后由三組對應(yīng)邊的比相等的兩個三角形相像,即可判斷△ABC和△DEF相像.解:△ABC和△DEF相像.由勾股定理,得AB=25,AC=5,BC=5,DE=4,DF=ABACBC2552,EF=25,∵DE=DF=EF=4=2,∴△ABC∽△DEF.方法總結(jié):在網(wǎng)格上當算線段的長,運用勾股定理是常用的方法.變式訓(xùn)練:見《學(xué)練優(yōu)》本課時練習(xí)“講堂達標訓(xùn)練”第8題【種類三】利用相像三角形證明角相等ABBCAC如圖,已知AD=DE=AE,找出圖中相等的角,并說明你的原因.ABBCAC分析:由AD=DE=AE,證明△ABC∽△ADE,再利用相像三角形對應(yīng)角相等求解.ABBCAC解:在△ABC和△ADE中,∵AD=DE=AE,∴△ABC∽△ADE,∴∠BAC=∠DAE,B=∠D,∠C=∠E.方法總結(jié):在證明角相等時,可經(jīng)過證明三角形相像獲得.變式訓(xùn)練:見《學(xué)練優(yōu)》本課時練習(xí)“課后穩(wěn)固提高”第6題【種類四】利用相像三角形的判斷證明線段的平行關(guān)系如圖,某地四個鄉(xiāng)鎮(zhèn)A,B,C,D之間建有公路,已知AB=14千米,AD=28千米,BD=21千米,BC=42千米,DC=31.5千米,公路AB與CD平行嗎?說出你的原因.2分析:由圖中已知線段的長度,可求兩個三角形的對應(yīng)線段的比,證明三角形相像,得出角相等,經(jīng)過角相等證明線段的平行關(guān)系.解:公路AB與CD平行.∵AB142AD282BD212BD==,==,DC==,∴△ABD∽△BDC,213BC42331.53∴∠ABD=∠BDC,∴AB∥DC.方法總結(jié):假如在已知條件中邊的數(shù)目關(guān)系許多時,可考慮使用“三邊對應(yīng)成比率,兩三角形相像”的判斷方法.【種類五】利用相像三角形的判斷解決研究性問題要制作兩個形狀同樣的三角形教具,此中一個三角形教具的三邊長分別為50cm,60cm,80cm,另一個三角形教具的一邊長為20cm,請問如何選料可使這兩個三角形教具相像?想一想看,有幾種解決方案.分析:要使兩個三角形相像,已知一個三角形的三邊和另一個三角形的一邊,則我們能夠采納三邊分別對應(yīng)成比率的兩個三角形相像判斷.解:①當長為20cm的邊長的對應(yīng)邊為50cm時,∵50∶20=5∶2,且第一個三角形教具的三邊長分別是50cm,60cm,80cm,∴另一個三角形對應(yīng)的三邊分別為:20cm,24cm,32cm;②當長為20cm的邊長的對應(yīng)邊為60cm時,∵60∶20=3∶1,且第一個三角形教具的三邊長分別是50cm,60cm,80cm,∴另一個三角形對應(yīng)的三邊分別為:5080cm,20cm,cm;③當長為3320cm的邊長的對應(yīng)邊為80cm時,∵80∶20=4∶1,且第一個三角形教具的三邊長分別是50cm,60cm,80cm,∴另一個三角形對應(yīng)的三邊分別為:12.5cm,15cm,20cm.∴有三種解決方案.方法總結(jié):解答本題的要點在于分類議論,當對應(yīng)比不確準時,采納分類議論的方法可避免漏解.變式訓(xùn)練:見《學(xué)練優(yōu)》本課時練習(xí)“課后穩(wěn)固提高”第7題三、板書設(shè)計1.三角形相像的判斷定理:三邊對應(yīng)成比率的兩個三角形相像;2.利用相像三

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論