版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
2022-2023學(xué)年黑龍江省哈爾濱市普通高校對口單招數(shù)學(xué)自考真題(含答案)學(xué)校:________班級:________姓名:________考號:________
一、單選題(10題)1.A.π
B.C.2π
2.設(shè)Sn為等差數(shù)列{an}的前n項(xiàng)和,S8=4a3,a7=-2,則a9等于()A.-6B.-4C.-2D.2
3.A.{1,0}B.{1,2}C.{1}D.{-1,1,0}
4.設(shè)m>n>1且0<a<1,則下列不等式成立的是()A.am<an
B.an<am
C.a-m<a-n
D.ma<na
5.設(shè)一直線過點(diǎn)(2,3)且它在坐標(biāo)軸上的截距和為10,則直線方程為()A.
B.
C.
D.
6.設(shè)集合U={1,2,3,4,5,6},M={1,3,5},則C∪M=()A.{2,4,6}B.{1,3,5}C.{1,2,4}D.U
7.A.一B.二C.三D.四
8.以坐標(biāo)軸為對稱軸,離心率為,半長軸為3的橢圓方程是()A.
B.或
C.
D.或
9.等比數(shù)列{an}中,若a2
=10,a3=20,則S5等于()A.165B.160C.155D.150
10.A.(0,4)
B.C.(-2,2)
D.
二、填空題(10題)11.雙曲線3x2-y2=3的漸近線方程是
。
12.若展開式中各項(xiàng)系數(shù)的和為128,則展開式中x2項(xiàng)的系數(shù)為_____.
13.
14.設(shè){an}是公比為q的等比數(shù)列,且a2=2,a4=4成等差數(shù)列,則q=
。
15.橢圓9x2+16y2=144的短軸長等于
。
16.若集合,則x=_____.
17.右圖是一個(gè)算法流程圖.若輸入x的值為1/16,則輸出y的值是____.
18.口袋裝有大小相同的8個(gè)白球,4個(gè)紅球,從中任意摸出2個(gè),則兩球顏色相同的概率是_____.
19.已知函數(shù)f(x)=ax3的圖象過點(diǎn)(-1,4),則a=_______.
20.若lgx>3,則x的取值范圍為____.
三、計(jì)算題(5題)21.已知函數(shù)f(x)的定義域?yàn)閧x|x≠0},且滿足.(1)求函數(shù)f(x)的解析式;(2)判斷函數(shù)f(x)的奇偶性,并簡單說明理由.
22.某小組有6名男生與4名女生,任選3個(gè)人去參觀某展覽,求(1)3個(gè)人都是男生的概率;(2)至少有兩個(gè)男生的概率.
23.有語文書3本,數(shù)學(xué)書4本,英語書5本,書都各不相同,要把這些書隨機(jī)排在書架上.(1)求三種書各自都必須排在一起的排法有多少種?(2)求英語書不挨著排的概率P。
24.已知函數(shù)y=cos2x+3sin2x,x∈R求:(1)函數(shù)的值域;(2)函數(shù)的最小正周期。
25.(1)求函數(shù)f(x)的定義域;(2)判斷函數(shù)f(x)的奇偶性,并說明理由。
四、簡答題(10題)26.求k為何值時(shí),二次函數(shù)的圖像與x軸(1)有2個(gè)不同的交點(diǎn)(2)只有1個(gè)交點(diǎn)(3)沒有交點(diǎn)
27.計(jì)算
28.一條直線l被兩條直線:4x+y+6=0,3x-5y-6=0截得的線段中點(diǎn)恰好是坐標(biāo)原點(diǎn),求直線l的方程.
29.已知A,B分別是橢圓的左右兩個(gè)焦點(diǎn),o為坐標(biāo)的原點(diǎn),點(diǎn)P(-1,)在橢圓上,線段PB與y軸的焦點(diǎn)M為線段PB的中心點(diǎn),求橢圓的標(biāo)準(zhǔn)方程
30.解關(guān)于x的不等式
31.四棱錐S-ABCD中,底面ABOD為平行四邊形,側(cè)面SBC丄底面ABCD(1)證明:SA丄BC
32.已知拋物線的焦點(diǎn)到準(zhǔn)線L的距離為2。(1)求拋物線的方程及焦點(diǎn)下的坐標(biāo)。(2)過點(diǎn)P(4,0)的直線交拋物線AB兩點(diǎn),求的值。
33.解不等式組
34.已知向量a=(1,2),b=(x,1),μ=a+2b,v=2a-b且μ//v;求實(shí)數(shù)x。
35.若α,β是二次方程的兩個(gè)實(shí)根,求當(dāng)m取什么值時(shí),取最小值,并求出此最小值
五、解答題(10題)36.
37.已知橢圓C:x2/a2+y2/b2=1(a>b>0)的離心率為,在C上;(1)求C的方程;(2)直線L不過原點(diǎn)O且不平行于坐標(biāo)軸,L與C有兩個(gè)交點(diǎn)A,B,線段AB的中點(diǎn)為M.證明:直線OM的斜率與直線L的斜率的乘積為定值.
38.如圖,在三棱錐A-BCD中,AB丄平面BCD,BC丄BD,BC=3,BD=4,直線AD與平面BCD所成的角為45°點(diǎn)E,F(xiàn)分別是AC,AD的中點(diǎn).(1)求證:EF//平面BCD;(2)求三棱錐A-BCD的體積.
39.如圖,在四棱錐P-ABCD中,底面是正方形,PD⊥平面ABCD,且PD=AD.(1)求證:PA⊥CD;(2)求異面直線PA與BC所成角的大小.
40.已知等差數(shù)列{an}的前72項(xiàng)和為Sn,a5=8,S3=6.(1)求數(shù)列{an}的通項(xiàng)公式;(2)若數(shù)列{an}的前k項(xiàng)和Sk=72,求k的值.
41.已知函數(shù)f(x)=x2-2ax+a,(1)當(dāng)a=2時(shí),求函數(shù)f(x)在[0,3]上的值域;(2)若a<0,求使函數(shù)f(x)=x2-2ax+a的定義域?yàn)閇―1,1],值域?yàn)閇一2,2]的a的值.
42.甲、乙兩人進(jìn)行投籃訓(xùn)練,己知甲投球命中的概率是1/2,乙投球命中的概率是3/5,且兩人投球命中與否相互之間沒有影響.(1)若兩人各投球1次,求恰有1人命中的概率;(2)若兩人各投球2次,求這4次投球中至少有1次命中的概率.
43.
44.已知圓C:(x-1)2+y2=9內(nèi)有一點(diǎn)P(2,2),過點(diǎn)P作直線l交圓C于A、B兩點(diǎn).(1)當(dāng)直線l過圓心C時(shí),求直線l的方程;(2)當(dāng)直線l的傾斜角為45°時(shí),求弦AB的長.
45.
六、單選題(0題)46.函數(shù)f(x)=x2+2x-5,則f(x-1)等于()A.x2-2x-6
B.x2-2x-5
C.x2-6
D.x2-5
參考答案
1.C
2.A等差數(shù)列的性質(zhì).由S8=4a3知:S8=a1+a2+a3+...+a8=4(a1+a8)=4(a3+a6)=4a3.a6=0,所以a7-a6=d=-2.所以a9=a7+2d=-2-4=-6.
3.A
4.A由題可知,四個(gè)選項(xiàng)中只有選項(xiàng)A正確。
5.D
6.A集合補(bǔ)集的計(jì)算.C∪M={2,4,6}.
7.A
8.B由題意可知,焦點(diǎn)在x軸或y軸上,所以標(biāo)準(zhǔn)方程有兩個(gè),而a=3,c/a=1/3,所以c=1,b2=8,因此答案為B。
9.C
10.A
11.
,
12.-189,
13.-16
14.
,由于是等比數(shù)列,所以a4=q2a2,得q=。
15.
16.
,AB為A和B的合集,因此有x2=3或x2=x且x不等于1,所以x=
17.-2算法流程圖的運(yùn)算.初始值x=1/16不滿足x≥1,所以y=2+㏒21/16=2-㏒224=-2,故答案-2.
18.
19.-2函數(shù)值的計(jì)算.由函數(shù)f(x)=ax3-2x過點(diǎn)(-1,4),得4=a(-1)3-2×(-1),解得a=-2.
20.x>1000對數(shù)有意義的條件
21.
22.
23.
24.
25.
26.∵△(1)當(dāng)△>0時(shí),又兩個(gè)不同交點(diǎn)(2)當(dāng)A=0時(shí),只有一個(gè)交點(diǎn)(3)當(dāng)△<0時(shí),沒有交點(diǎn)
27.
28.
29.點(diǎn)M是線段PB的中點(diǎn)又∵OM丄AB,∴PA丄AB則c=1+=1,a2=b2+c2解得,a2=2,b2=1,c2=1因此橢圓的標(biāo)準(zhǔn)方程為
30.
31.證明:作SO丄BC,垂足為O,連接AO∵側(cè)面SB丄底面ABCD∴SO丄底面ABCD∵SA=SB∴0A=0B又∵ABC=45°∴AOB是等腰直角三角形則OA丄OB得SA丄BC
32.(1)拋物線焦點(diǎn)F(,0),準(zhǔn)線L:x=-,∴焦點(diǎn)到準(zhǔn)線的距離p=2∴拋物線的方程為y2=4x,焦點(diǎn)為F(1,0)(2)直線AB與x軸不平行,故可設(shè)它的方程為x=my+4,得y2-4m-16=0由設(shè)A(x1,x2),B(y1,y2),則y1y2=-16∴
33.x2-6x+8>0,∴x>4,x<2(1)(2)聯(lián)系(1)(2)得不等式組的解集為
34.
∵μ//v∴(2x+1.4)=(2-x,3)得
35.
36.
37.
38.
39.(1)如圖,已知底面ABCD是正方形,∴CD⊥AD.∵PD⊥平面ABCD,又CD包含于平面ABCD,∴PD⊥CD.∵PD∩AD=D,∴CD⊥平面PAD,又PA包含于平面PAD
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 小區(qū)社群運(yùn)營管理制度
- 運(yùn)營商網(wǎng)絡(luò)管理制度
- 單一藥品運(yùn)營管理制度
- 萬眾空間運(yùn)營管理制度
- 鄭州大學(xué)場館運(yùn)營制度
- 生鮮運(yùn)營管理制度
- 私家車運(yùn)營管理制度范本
- 排水設(shè)備運(yùn)營管理制度
- 文化宮運(yùn)營制度模板
- 燒臘店運(yùn)營管理制度范本
- 演出單位薪酬管理制度
- 2024年新高考Ⅰ卷數(shù)學(xué)真題解題技巧(1題2-4解)和考前變式訓(xùn)練(原卷版)
- 企業(yè)財(cái)務(wù)數(shù)字化轉(zhuǎn)型的路徑規(guī)劃及實(shí)施方案設(shè)計(jì)
- DB32T 1712-2011 水利工程鑄鐵閘門設(shè)計(jì)制造安裝驗(yàn)收規(guī)范
- 百度人才特質(zhì)在線測評題
- DL∕T 5142-2012 火力發(fā)電廠除灰設(shè)計(jì)技術(shù)規(guī)程
- 2024年水合肼行業(yè)發(fā)展現(xiàn)狀分析:水合肼市場需求量約為11.47萬噸
- 提水試驗(yàn)過程及數(shù)據(jù)處理
- GB/T 17592-2024紡織品禁用偶氮染料的測定
- 新人教版五年級小學(xué)數(shù)學(xué)全冊奧數(shù)(含答案)
- 采購英文分析報(bào)告
評論
0/150
提交評論