高中數(shù)學知識點總結(jié)歸納(2篇)_第1頁
高中數(shù)學知識點總結(jié)歸納(2篇)_第2頁
高中數(shù)學知識點總結(jié)歸納(2篇)_第3頁
高中數(shù)學知識點總結(jié)歸納(2篇)_第4頁
高中數(shù)學知識點總結(jié)歸納(2篇)_第5頁
已閱讀5頁,還剩7頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領

文檔簡介

第5頁共5頁高中數(shù)學知識點總結(jié)歸納1、含n個元素的有限集合其子集共有2n個,非空子集有2n—1個,非空真子集有2n—2個。2、集合中,Cu(A∩B)=(CuA)U(CuB),交之補等于補之并。Cu(AUB)=(CuA)∩(CuB),并之補等于補之交。3、ax2+bx+c<0的解集為x(0+c>0的解集為x,cx2+bx+a>0的解集為>x或x<;ax2—bx+4、c<0的解集為x,cx2—bx+a>0的解集為->x或x<-。5、原命題與其逆否命題是等價命題。原命題的逆命題與原命題的否命題也是等價命題。6、函數(shù)是一種特殊的映射,函數(shù)與映射都可用:f:A→B表示。A表示原像,B表示像。當f:A→B表示函數(shù)時,A表示定義域,B大于或等于其值域范圍。只有一一映射的函數(shù)才具有反函數(shù)。7、原函數(shù)與反函數(shù)的單調(diào)性一致,且都為奇函數(shù)。偶函數(shù)和周期函數(shù)沒有反函數(shù)。若f(x)與g(x)關于點(a,b)對稱,則g(x)=2b-f(2a-x).8、若f(-x)=f(x),則f(x)為偶函數(shù),若f(-x)=f(x),則f(x)為奇函數(shù);偶函數(shù)關于y軸對稱,且對稱軸兩邊的單調(diào)性相反;奇函數(shù)關于原點對稱,且在整個定義域上的單調(diào)性一致。反之亦然。若奇函數(shù)在x=0處有意義,則f(0)=0。函數(shù)的單調(diào)性可用定義法和導數(shù)法求出。偶函數(shù)的導函數(shù)是奇函數(shù),奇函數(shù)的導函數(shù)是偶函數(shù)。對于任意常數(shù)T(T≠0),在定義域范圍內(nèi),都有f(x+T)=f(x),則稱f(x)是周期為T的周期函數(shù),且f(x+kT)=f(x),k≠0.9、周期函數(shù)的特征性:①f(x+a)=-f(x),是T=2a的函數(shù),②若f(x+a)+f(x+b)=0,即f(x+a)=-f(x+b),T=2(b-a)的函數(shù),③若f(x)既x=a關對稱,又關于x=b對稱,則f(x)是T=2(b-a)的函數(shù)④若f(x+a)f(x+b)=±1,即f(x+a)=±,則f(x)是T=2(b-a)的函數(shù)⑤f(x+a)=±,則f(x)是T=4(b-a)的函數(shù)10、復合函數(shù)的單調(diào)性滿足“同增異減”原理。定義域都是指函數(shù)中自變量的取值范圍。11、抽象函數(shù)主要有f(xy)=f(x)+f(y)(對數(shù)型),f(x+y)=f(x)f(y)(指數(shù)型),f(x+y)=f(x)+f(y)(直線型)。12、指數(shù)函數(shù)圖像的規(guī)律是:底數(shù)按逆時針增大。對數(shù)函數(shù)與之相反.13、aras=ar+s,ar÷as=ar—s,(ar)s=ars,(ab)r=arbr。在解可化為a2x+Bax+C=0或a2x+Bax+C≥0(≤0)的指數(shù)方程或不等式時,常借助于換元法,應特別注意換元后新變元的取值范圍。14、log10N=lgN;logeN=lnN(e=2.718);對數(shù)的性質(zhì):如果a>0,a≠0,M>0N>0,那么loga(MN)=logaM+logaN,;loga(____)=logaM—logaN;logaMn=nlogaM;alogaN=N.換底公式:logaN=;logamlogbnlogck=logbmlogcnlogak=logcmloganlogbk.15、函數(shù)圖像的變換:(1)水平平移:y=f(x±a)(a>0)的圖像可由y=f(x)向左或向右平移a個單位得到;(2)豎直平移:y=f(x)±b(b>0)圖像,可由y=f(x)向上或向下平移b個單位得到;(3)對稱:若對于定義域內(nèi)的一切x均有f(x+m)=f(x—m),則y=f(x)的圖像關于直線x=m對稱;y=f(x)關于(a,b)對稱的函數(shù)為y!=2b—f(2a—x).(5)有關結(jié)論:①若f(a+x)=f(b—x),在x為一切實數(shù)上成立,則y=f(x)的圖像關于x=對稱。②函數(shù)y=f(a+x)與函數(shù)y=f(b—x)的圖像有關于直線x=對稱。15、等差數(shù)列中,an=a1+(n—1)d=am+(n—m)d;sn=n=na1+16、若n+m=p+q,則am+an=ap+aq;sk,s2k—k,s3k—2k成以k2d為公差的等差數(shù)列。an是等差數(shù)列,若ap=q,aq=p,則ap+q=0;若sp=q,sq=p,則sp+q=—(p+q);若已知sk,sn,sn—k,sn=(sk+sn+sn—k)/2k;若an是等差數(shù)列,則可設前n項和為sn=an2+bn(注:沒有常數(shù)項),用方程的思想求解a,b。在等差數(shù)列中,若將其腳碼成等差數(shù)列的項取出組成數(shù)列,則新的數(shù)列仍舊是等差數(shù)列。17、等比數(shù)列中,an=a1qn-1=amqn-m,若n+m=p+q,則aman=apaq;sn=na1(q=1),sn=,(q≠1);若q≠1,則有=q,若q≠—1,=q;sk,s2k—k,s3k—2k也是等比數(shù)列。a1+a2+a3,a2+a3+a4,a3+a4+a5也成等比數(shù)列。在等比數(shù)列中,若將其腳碼成等差數(shù)列的項取出組成數(shù)列,則新的數(shù)列仍舊是等比數(shù)列。裂項公式:=—,=(—),常用數(shù)列遞推形式:疊加,疊乘,其面積為,其圓心角為2弧度。19、Sina(α+β)=sinαcosβ+cosαsinβ;Sina(α—β)=sinαcosβ—cosαsinβ;Cos(α+β)=cosαcosβ—sinαsinβ;cos(α—β)=cosαcosβ+sinαsinβ高考數(shù)學必考知識點1.【數(shù)列】&【解三角形】數(shù)列與解三角形的知識點在解答題的第一題中,是非此即彼的狀態(tài),近些年的特征是大題第一題兩年數(shù)列兩年解三角形輪流來,____、____年大題第一題考查的是數(shù)列,____年大題第一題考查的是解三角形,故預計____年大題第一題較大可能仍然考查解三角形。數(shù)列主要考察數(shù)列的定義,等差數(shù)列、等比數(shù)列的性質(zhì),數(shù)列的通項公式及數(shù)列的求和。解三角形在解答題中主要考查正、余弦定理在解三角形中的應用。2.【立體幾何】高考在解答題的第二或第三題位置考查一道立體幾何題,主要考查空間線面平行、垂直的證明,求二面角等,出題比較穩(wěn)定,第二問需合理建立空間直角坐標系,并正確計算。3.【概率】高考在解答題的第二或第三題位置考查一道概率題,主要考查古典概型,幾何概型,二項分布,超幾何分布,回歸分析與統(tǒng)計,近年來概率題每年考查的角度都不一樣,并且題干長,是學生感到困難的一題,需正確理解題意。4.【解析幾何】高考在第20題的位置考查一道解析幾何題。主要考查圓錐曲線的定義和性質(zhì),軌跡方程問題、含參問題、定點定值問題、取值范圍問題,通過點的坐標運算解決問題。5.【導數(shù)】高考在第21題的位置考查一道導數(shù)題。主要考查含參數(shù)的函數(shù)的切線、單調(diào)性、最值、零點、不等式證明等問題,并且含參問題一般較難,處于必做題的最后一題。6.【選做題】今年高考幾何證明選講已經(jīng)刪除,選考題只剩兩道,一道是坐標系與參數(shù)方程問題,另一道是不等式選講問題。坐標系與參數(shù)方程題主要考查曲線的極坐標方程、參數(shù)方程、直線參數(shù)方程的幾何意義的應用以及范圍的最值問題;不等式選講題主要考查絕對值不等式的化簡,求參數(shù)的范圍及不等式的證明。高中數(shù)學知識點總結(jié)歸納(二)一、導數(shù)的應用1、用導數(shù)研究函數(shù)的最值確定函數(shù)在其確定的定義域內(nèi)可導(通常為開區(qū)間),求出導函數(shù)在定義域內(nèi)的零點,研究在零點左、右的函數(shù)的單調(diào)性,若左增,右減,則在該零點處,函數(shù)去極大值;若左邊減少,右邊增加,則該零點處函數(shù)取極小值。學習了如何用導數(shù)研究函數(shù)的最值之后,可以做一個有關導數(shù)和函數(shù)的綜合題來檢驗下學習成果。2、生活中常見的函數(shù)優(yōu)化問題1)費用、成本最省問題2)利潤、收益最大問題3)面積、體積最(大)問題二、推理與證明2、類比推理:由兩類對象具有某些類似特征和其中一類對象的某些已知特征,推出另一類對象也具有這些特征的推理稱為類比推理,簡而言之,類比推理是由特殊到特殊的推理。三、不等式對于含有參數(shù)的一元二次不等式解的討論1)二次項系數(shù):如果二次項系數(shù)含有字母,要分二次項系數(shù)是正數(shù)、零和負數(shù)三種情況進行討論。2)不等式對應方程的根:如果一元二次不等式對應的方程的根能夠通過因式分解的方法求出來,則根據(jù)這兩個根的大小進行分類討論,這時,兩個根的大小關系就是分類標準,如果一元二次不等式對應的方程根不能通過因式分解的方法求出來,則根據(jù)方程的判別式進行分類討論。通過不等式練習題能夠幫助你更加熟練的運用不等式的知識點,例如用放縮法證明不等式這種技巧以及利用均值不等式求最值的九種技巧這樣的解題思路需要再做題的過程中總結(jié)出來。四、坐標平面上的直線1、內(nèi)容要目:直線的點方向式方程、直線的點法向式方程、點斜式方程、直線方程的一般式、直線的傾斜角和斜率等。點到直線的距離,兩直線的夾角以及兩平行線之間的距離。2、基本要求:掌握求直線的方法,熟練轉(zhuǎn)化確定直線方向的不同條件(例如:直線方向向量、法向量、斜率、傾斜角等)。熟練判斷點與直線、直線與直線的不同位置,能正確求點到直線的距離、兩直線的交點坐標及兩直線的夾角大小。3、重難點:初步建立代數(shù)方法解決幾何問題的觀念,正確將幾何條件與代數(shù)表示進行轉(zhuǎn)化,定量地研究點與直線、直線與直線的位置關系。根據(jù)兩個獨立條件求出直線方程。熟練運用待定系數(shù)法。五、圓錐曲線1、內(nèi)容要目:直角坐標系中,曲線C是方程F(x,y)=0的曲線及方程F(x,y)=0是曲線C的方程,圓的標準方程及圓的一般方程。橢圓、雙曲線、拋物線的標準方程及它們的性質(zhì)。2、基本要求:理解曲線的方程與方程的曲線的意義,利用代數(shù)方法判斷定點是否在曲線上及求曲線的交點。掌握圓、橢圓、雙曲線、拋物線的定義和求這些曲線方程的基本方法。求曲線的交點之間的距離及交點的中點坐標。利用直線和圓、圓和圓的位置關系的幾何判定,確定它們的位置關系并利用解析法解決相應的幾何問題。3、重難點:建立數(shù)形結(jié)合的概念,理解曲線與方程的對應關系,掌握代數(shù)研究幾何的方法,掌握把已知條件轉(zhuǎn)化為等價的代數(shù)表示,通過代數(shù)方法解決幾何問題。1.函數(shù)的奇偶性(1)若f(x)是偶函數(shù),那么f(x)=f(-x);(2)若f(x)是奇函數(shù),0在其定義域內(nèi),則f(0)=0(可用于求參數(shù));(3)判斷函數(shù)奇偶性可用定義的等價形式:f(x)±f(-x)=0或(f(x)≠0);(4)若所給函數(shù)的解析式較為復雜,應先化簡,再判斷其奇偶性;(5)奇函數(shù)在對稱的單調(diào)區(qū)間內(nèi)有相同的單調(diào)性;偶函數(shù)在對稱的單調(diào)區(qū)間內(nèi)有相反的單調(diào)性;2.復合函數(shù)的有關問題(1)復合函數(shù)定義域求法:若已知的定義域為[a,b],其復合函數(shù)f[g(x)]的定義域由不等式a≤g(x)≤b解出即可;若已知f[g(x)]的定義域為[a,b],求f(x)的定義域,相當于x∈[a,b]時,求g(x)的值域(即f(x)的定義域);研究函數(shù)的問題一定要注意定義域優(yōu)先的原則。(2)復合函數(shù)的單調(diào)性由“同增異減”判定;3.函數(shù)圖像(或方程曲線的對稱性)(1)證明函數(shù)圖像的對稱性,即證明圖像上任意點關于對稱中心(對稱軸)的對稱點仍在圖像上;(2)證明圖像C1與C2的對稱性,即證明C1上任意點關于對稱中心(對稱軸)的對稱點仍在C2上,反之亦然;(3)曲線C1:f(x,y)=0,關于y=x+a(y=-x+a)的對稱曲線C2的方程為f(y-a,x+a)=0(或f(-y+a,-x+a)=0);(4)曲線C1:f(x,y)=0關于點(a,b)的對稱曲線C2方程為:f(2a-x,2b-y)=0;(5)若函數(shù)y=f(x)對x∈R時,f(a+x)=f(a-x)恒成立,則y=f(x)圖像關于直線x=a對稱;(6)函數(shù)y=f(x-a)與y=f(b-x)的圖像關于直線x=對稱;4.函數(shù)的周期性(1)y=f(x)對x∈R時,f(x+a)=f(x-a)或f(x-2a)=f(x)(a>0)恒成立,則y=f(x)是周期為2a的周期函數(shù);(4)若y=f(x)關于點(a,0),(b,0)對稱,則f(x)是周期為2的周期函數(shù);(5)y=f(x)的圖象關于直線x=a,x=b(a≠b)對稱,則函數(shù)y=f(x)是周期為2的周期函數(shù);(6)y=f(x)對x∈R時,f(x+a)=-f(x)(或f(x+a)=,則y=f(x)是周期為2的周期函數(shù);5.方程k=f(x)有解k∈D(D為f(x)的值域);a≥f(x)恒成立a≥[f(x)]max,;a≤f(x)恒成立a≤[f(x)]min;(1)(a>0,a≠1,b>0,n∈R+);(2)logaN=(a>0,a≠1,b>0,b≠1);(3)logab的符號由口訣“同正異負”記憶;(4)alogaN=N(a>0,a≠1,N>0);6.判斷對應是否為映射時,抓住兩點:(1)A中元素必須都有象且;(2)B中元素不一定都有原象,并且A中不同元素在B中可以有相同的象;7.能熟練地用定義證明函數(shù)的單調(diào)性,求反函數(shù),判斷函數(shù)的奇偶性。8.對于反函數(shù),應掌握以下一些結(jié)論:(1)定義域上的單調(diào)函數(shù)必有反函數(shù);(2)奇函數(shù)的反函數(shù)也是奇函數(shù);(3)定義域為非單元素集的偶函數(shù)不存在反函數(shù);(4)周期函數(shù)不存在反函數(shù);(5)互為反函數(shù)的兩個函數(shù)具有相同的單調(diào)性;(6)y=f(x)與y=f-1(x)互為反函數(shù),設f(x)的定義域為A,值域為B,則有f[f--1(x)]=x(x∈B),f--1[f(x)]=x(x∈A);9.處理二次函數(shù)的問題勿忘數(shù)形結(jié)合二次函數(shù)在閉區(qū)間上必有最值,求最值問題用“兩看法”:一看開口方向;二看對稱軸與所給區(qū)間的相對位置關系;10依據(jù)單調(diào)性利用一次函數(shù)在區(qū)間上的保號性可解決求一類參數(shù)的范圍問題;11恒成立問題的處理方法:(1)分離參數(shù)法;(2)轉(zhuǎn)化為一元二次方程的根的分布列不等式(組)求解;練習題:1.(-3,4)關于x軸對稱的點的坐標為____,關于y軸對稱的點的坐標為____,關于原點對稱的坐標為____.2.點B(-5,-2)到x軸的距離是____,到y(tǒng)軸的距離是____,到原點的距離是____3.以點(3,0)為圓心,半徑為5的圓與x軸交點坐標為____,與y軸交點坐標為____4.點P(a-3,5-a)在第一象限內(nèi),則a的取值范圍是____5.小華用____元去購買單價為____元的一種商品,剩余的錢y(元)與購買這種商品的件數(shù)x(

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論